当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2017年鞍山市数学中考题(有答案)» 正文

2017年鞍山市数学中考题(有答案)

[05-18 21:30:48]   来源:http://www.kmf8.com  初三数学试卷   阅读:8378
概要: 考点: 条形统计图;用样本估计总体;扇形统计图。分析: (1)用1.5﹣2小时的频数除以其所占的百分比即可求得抽样调查的人数;(2)根据圆心角的度数求出每个小组的频数即可补全统计图;(3)用人数除以总人数乘以周角即可求得圆心角的度数;(4)用总人数乘以不超过1.5小时的所占的百分比即可.解答: 解:(1)观察统计图知:用车时间在1.5~2小时的有30人,其圆心角为54°,故抽查的总人数为30÷ =200人;(2)用车时间在0.5~1小时的有200× =60人;用车时间在2~2.5小时的有200﹣60﹣30﹣90=20人,统计图为:(3)用车时间在1~1.5小时的部分对应的扇形圆心角的度数为 ×360°=162°;(4)该社区用车时间不超过1.5小时的约有1600× =1200人;点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,AB是⊙
2017年鞍山市数学中考题(有答案),标签:初三数学试卷分析,http://www.kmf8.com

考点: 条形统计图;用样本估计总体;扇形统计图。

分析: (1)用1.5﹣2小时的频数除以其所占的百分比即可求得抽样调查的人数;

(2)根据圆心角的度数求出每个小组的频数即可补全统计图;

(3)用人数除以总人数乘以周角即可求得圆心角的度数;

(4)用总人数乘以不超过1.5小时的所占的百分比即可.

解答: 解:(1)观察统计图知:用车时间在1.5~2小时的有30人,其圆心角为54°,

故抽查的总人数为30÷ =200人;

(2)用车时间在0.5~1小时的有200× =60人;

用车时间在2~2.5小时的有200﹣60﹣30﹣90=20人,

统计图为:

(3)用车时间在1~1.5小时的部分对应的扇形圆心角的度数为 ×360°=162°;

(4)该社区用车时间不超过1.5小时的约有1600× =1200人;

点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

23.如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB= ,延长OE到点F,使EF=2OE.

(1)求⊙O的半径;

(2)求证:BF是⊙O的切线.

考点: 圆的综合题。

专题: 综合题。

分析: (1)连OA,由直径CE⊥AB,根据垂径定理可得到AD=BD=2,弧AE=弧BE,利用圆周角定理得到∠ACE=∠BCE,∠AOB=2∠ACB,且∠AOE=∠BOE,则∠BOE=∠ACB,可得到cos∠BOD=cos∠ACB= ,在Rt△BOD中,设OD=x,则OB=3x,利用勾股定理可计算出x= ,则OB=3x= ;

(2)由于FE=2OE,则OF=3OE= ,则 = ,而 = ,于是得到 = ,根据相似三角形的判定即可得到△OBF∽△ODB,根据相似三角形的性质有∠OBF=∠ODB=90°,然后根据切线的判定定理即可得到结论.

解答: (1)解:连OA,如图,

∵直径CE⊥AB,

∴AD=BD=2,弧AE=弧BE,

∴∠ACE=∠BCE,∠AOE=∠BOE,

又∵∠AOB=2∠ACB,

∴∠BOE=∠ACB,

而cos∠ACB= ,

∴cos∠BOD= ,

在Rt△BOD中,设OD=x,则OB=3x,

∵OD2+BD2=OB2,

∴x2+22=(3x)2,解得x= ,

∴OB=3x= ,

即⊙O的半径为 ;

(2)证明:∵FE=2OE,

∴OF=3OE= ,

∴ = ,

而 = ,

∴ = ,

而∠BOF=∠DOB,

∴△OBF∽△ODB,

∴∠OBF=∠ODB=90°,

∵OB是半径,

∴BF是⊙O的切线.

点评: 本题考查了圆的综合题:垂直于弦的直径平分弦,并且平分弦所对的弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角的度数的一半;过半径的外端点与半径垂直的直线是圆的切线;运用三角形相似证明角度相等.

24.某实验学校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,如果购买3张两人学习桌,1张三人学习桌需220元;如果购买2张两人学习桌,3张三人学习桌需310元.

(1)求两人学习桌和三人学习桌的单价;

(2)学校欲投入资金不超过6000元,购买两种学习桌共98张,以至少满足248名学生的需求,设购买两人学习桌x张,购买两人学习桌和三人学习桌的总费用为W 元,求出W与x的函数关系式;求出所有的购买方案.

考点: 一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用。

分析: (1)设每张两人学习桌单价为a元和每张三人学习桌单价为b元,根据如果购买3张两人学习桌,1张三人学习桌需220元;如果购买2张两人学习桌,3张三人学习桌需310元分别得出等式方程,组成方程组求出即可;

(2)根据购买两种学习桌共98张,设购买两人学习桌x张,则购买3人学习桌(98﹣x)张,根据以至少满足248名学生的需求,以及学校欲投入资金不超过6000元得出不等式,进而求出即可.

解答: 解:(1)设每张两人学习桌单价为a元和每张三人学习桌单价为b元,根据题意得出:

解得: ,

答:两人学习桌和三人学习桌的单价分别为50元,70元;

(2)设购买两人学习桌x张,则购买3人学习桌(98﹣x)张,

购买两人学习桌和三人学习桌的总费用为W 元,

则W与x的函数关系式为:W=50x+70(98﹣x)=﹣20x+6860;

根据题意得出:

由50x+70(98﹣x)≤6000,

解得:x≥43,

由2x+3(98﹣x)≥248,

解得:x≤46,

故不等式组的解集为:43≤x≤46,

故所有购买方案为:当购买两人桌43张时,购买三人桌58张,

当购买两人 桌44张时,购买三人桌54张,

当购买两人桌45张时,购买三人桌53张,

当购买两人桌46张时,购买三人桌52张.

点评: 此题主要考查了二元一次方程组的应用以及不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.

25.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.

(1)求证:△AOG≌△ADG;

(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;

(3)当∠1=∠2时,求直线PE的解析式.

考点: 一次函数综合题。

分析: (1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG;

(2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系;

(3)由△AOG≌△ADG可知,∠AGO =∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式.

上一页  [1] [2] [3] [4] [5] [6]  下一页


Tag:初三数学试卷初三数学试卷分析初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
上一篇:九年级上册期中考试数学卷(含答案)