当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷初三数学上册期末考试试卷(带答案)» 正文

初三数学上册期末考试试卷(带答案)

[10-20 00:48:49]   来源:http://www.kmf8.com  初三数学试卷   阅读:8218
概要: ⑵不能. …………………………………………4分∵r2=(4–2 )> 4–2×1.75= (dm),即r2> dm.,又∵CD=2dm,∴CD<4 r2,故不能再裁出所要求的圆铁片. …………………………………5分23. ⑴相切. …………………………………………1分证明:连结AN
初三数学上册期末考试试卷(带答案),标签:初三数学试卷分析,http://www.kmf8.com

⑵不能. …………………………………………4分

∵r2=(4–2 )> 4–2×1.75= (dm),

即r2> dm.,又∵CD=2dm,

∴CD<4 r2,故不能再裁出所要求的圆铁片. …………………………………5分

23. ⑴相切. …………………………………………1分

证明:连结AN,

∵AB是直径,

∴∠ANB=90°.

∵AB=AC,

∴∠BAN= ∠A=∠CBP.

又∵∠BAN+∠ABN=180°-∠ANB= 90°,

∴∠CBP+∠ABN=90°,即AB⊥BP.

∵AB是⊙O的直径,

∴直线BP与⊙O相切. …………………………………………3分

⑵∵在Rt△ABN中,AB=2,tan∠BAN= tan∠CBP=0.5,

可求得,BN= ,∴BC= . …………………………………………4分

作CD⊥BP于D,则CD∥AB, .

在Rt△BCD中,易求得CD= ,BD= . …………………………………5分

代入上式,得 = .

∴CP= . …………………………………………6分

∴DP= .

∴BP=BD+DP= + = . …………………………………………7分

24. ⑴依题意,点B和E关于MN对称,则ME=MB=4-AM.

再由AM2+AE2=ME2=(4-AM)2,得AM=2- . ……………………1分

作MF⊥DN于F,则MF=AB,且∠BMF=90°.

∵MN⊥BE,∴∠ABE= 90°-∠BMN.

又∵∠FMN =∠BMF -∠BMN=90°-∠BMN,

∴∠FMN=∠ABE.

∴Rt△FMN≌Rt△ABE.

∴FN=AE=x,DN=DF+FN=AM+x=2- +x. ………………………2分

∴S= (AM+DN)×AD

=(2- + )×4

= - +2x+8. ……………………………3分

其中,0≤x<4. ………………………………4分

⑵∵S= - +2x+8= - (x-2)2+10,

∴当x=2时,S最大=10; …………………………………………5分

此时,AM=2- ×22=1.5 ………………………………………6分

答:当AM=1.5时,四边形AMND的面积最大,为10.

⑶不能,0

25. ⑴∵△AOB∽△BOC(相似比不为1),

∴ . 又∵OA=4, OB=3,

∴OC=32× = . ∴点C( , 0). …………………1分

设图象经过A、B、C三点的函数解析式是y=ax2+bx+c,

则c= -3,且 …………………2分

解得,a= , b= .

∴这个函数的解析式是y = x2+ x-3. …………………3分

⑵∵△AOB∽△BOC(相似比不为1),

∴∠BAO=∠CBO.

又∵∠ABO+ ∠BAO =90°,

∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分

∴AC是△ABC外接圆的直径.

∴ r = AC= ×[ -(-4)]= . ………………5分

⑶∵点N在以BM为直径的圆上,

∴ ∠MNB=90°. ……………………6分

①. 当AN=ON时,点N在OA的中垂线上,

∴点N1是AB的中点,M1是AC的中点.

∴AM1= r = ,点M1(- , 0),即m1= - . ………………7分

②. 当AN=OA时,Rt△AM2N2≌Rt△ABO,

∴AM2=AB=5,点M2(1, 0),即m2=1.

③. 当ON=OA时,点N显然不能在线段AB上.

综上,符合题意的点M(m,0)存在,有两解:

m= - ,或1. ……………………8分

  www.kmf8.com

上一页  [1] [2] [3] 


Tag:初三数学试卷初三数学试卷分析初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
上一篇:九年级上学期期末数学卷(有答案)