当前位置:考满分吧中小学教学高考复习高考数学复习资料高考复习:应对高考数学难题方法» 正文

高考复习:应对高考数学难题方法

[03-31 06:08:52]   来源:http://www.kmf8.com  高考数学复习资料   阅读:8609
概要: 九、以退求进,立足特殊,发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。十、执果索因,逆向思考,正难则反对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。十一、回避结论的肯定与否定,解决探索性问题对探索性问题,不必追求结论的 “是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。【总结】应对高考数学难题方法就为大家介绍到这儿了,大家想了解更多关于学习的内容,请继续关注www.kmf8.com。更多精彩内容等着您。浏览了本文的读者也浏览了:高考备考:高考数学函数与导数的重要性高考备考数学一轮复习:注重对知识体系的总结更多精彩内容尽在:首页
高考复习:应对高考数学难题方法,标签:高考数学答题技巧,高考数学知识点,http://www.kmf8.com

九、以退求进,立足特殊,发散一般

对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

十、执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

十一、回避结论的肯定与否定,解决探索性问题

对探索性问题,不必追求结论的 “是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

【总结】应对高考数学难题方法就为大家介绍到这儿了,大家想了解更多关于学习的内容,请继续关注www.kmf8.com。更多精彩内容等着您。

浏览了本文的读者也浏览了

高考备考:高考数学函数与导数的重要性

高考备考数学一轮复习:注重对知识体系的总结

更多精彩内容尽在:首页 > 高考 > 高考备考 > 高考数学备考

上一页  [1] [2] 


Tag:高考数学复习资料高考数学答题技巧,高考数学知识点高考复习 - 高考数学复习资料
上一篇:高考复习:高三学生如何攻克“圆锥曲线”大关