可设 , ,
将点 代入解得 .故所求的解析式为 .
点评:三种解法均是待定系数法,也是求二次函数解析式常用的三种形式:一般式,顶点式,零点式.
例2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y(km)与时间x(分)的关系.试写出 的函数解析式.
分析:理解题意,根据图像待定系数法求解析式.
解:当 时,直线方程为 ,当 时,直线方程为 ,
点评:建立函数的解析式是解决实际问题的关键,把题中文字语言描述的数学关系用数学符号语言表达.要注意求出解析式后,一定要写出其定义域.
【反馈演练】
1.若 , ,则 ( D )
A. B. C. D.
2.已知 ,且 ,则m等于________.
3. 已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.求函数g(x)的解析式.
解:设函数 的图象上任意一点 关于原点的对称点为 ,
则
∵点 在函数 的图象上
第3课 函数的单调性
【考点导读】
1.理解函数单调性,最大(小)值及其几何意义;
2.会运用单调性的定义判断或证明一些函数的增减性.
【基础练习】
1.下列函数中:
① ; ② ; ③ ; ④ .
其中,在区间(0,2)上是递增函数的序号有___②___.
2.函数 的递增区间是___ R ___.
3.函数 的递减区间是__________.
4.已知函数 在定义域R上是单调减函数,且 ,则实数a的取值范围__________.
5.已知下列命题:
①定义在 上的函数 满足 ,则函数 是 上的增函数;
②定义在 上的函数 满足 ,则函数 在 上不是减函数;
③定义在 上的函数 在区间 上是增函数,在区间 上也是增函数,则函数 在 上是增函数;
④定义在 上的函数 在区间 上是增函数,在区间 上也是增函数,则函数 在 上是增函数.
其中正确命题的序号有_____②______.
【范例解析】
例 . 求证:(1)函数 在区间 上是单调递增函数;
(2)函数 在区间 和 上都是单调递增函数.
分析:利用单调性的定义证明函数的单调性,注意符号的确定.
证明:(1)对于区间 内的任意两个值 , ,且 ,
因为
,
又 ,则 , ,得 ,
故 ,即 ,即 .
所以,函数 在区间 上是单调增函数.
(2)对于区间 内的任意两个值 , ,且 ,
因为 ,
又 ,则 , , 得,
故 ,即 ,即 .
所以,函数 在区间 上是单调增函数.
同理,对于区间 ,函数 是单调增函数;
所以,函数 在区间 和 上都是单调增函数.
点评:利用单调性定义证明函数的单调性,一般分三步骤:(1)在给定区间内任意取两值 , ;(2)作差 ,化成因式的乘积并判断符号;(3)给出结论.
例2.确定函数 的单调性.
分析:作差后,符号的确定是关键.
解:由 ,得定义域为 .对于区间 内的任意两个值 , ,且 ,
则
又 , ,
,即 .
所以, 在区间 上是增函数.
点评:运用有理化可以对含根号的式子进行符号的确定.
【反馈演练】
1.已知函数 ,则该函数在 上单调递__减__,(填“增”“减”)值域为_________.
2.已知函数 在 上是减函数,在 上是增函数,则 __25___.
3. 函数 的单调递增区间为 .
4. 函数 的单调递减区间为 .
5. 已知函数 在区间 上是增函数,求实数a的取值范围.
解:设对于区间 内的任意两个值 , ,且 ,
则 ,
, , 得, , ,即 .
第4课 函数的奇偶性
【考点导读】
1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;
2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数.
【基础练习】
1.给出4个函数:① ;② ;③ ;④ .
其中奇函数的有___①④___;偶函数的有____②____;既不是奇函数也不是偶函数的有____③____.
2. 设函数 为奇函数,则实数 -1 .
3.下列函数中,在其定义域内既是奇函数又是减函数的是( A )
A. B. C. D.
【范例解析】
例1.判断下列函数的奇偶性:
(1) ; (2) ;
(3) ; (4) ;
(5) ; (6)
分析:判断函数的奇偶性,先看定义域是否关于原点对称,再利用定义判断.
解:(1)定义域为 ,关于原点对称; ,
所以 为偶函数.
(2)定义域为 ,关于原点对称; ,
,故 为奇函数.
(3)定义域为 ,关于原点对称; , 且 ,
所以 既为奇函数又为偶函数.
(4)定义域为 ,不关于原点对称;故 既不是奇函数也不是偶函数.
(5)定义域为 ,关于原点对称; , ,则 且 ,故 既不是奇函数也不是偶函数.
(6)定义域为 ,关于原点对称;
, 又 ,
,故 为奇函数.
点评:判断函数的奇偶性,应首先注意其定义域是否关于原点对称;其次,利用定义即 或 判断,注意定义的等价形式 或 .
例2. 已知定义在 上的函数 是奇函数,且当 时, ,求函数 的解析式,并指出它的单调区间.
分析:奇函数若在原点有定义,则 .
解:设 ,则 , .
又 是奇函数, , .
当 时, .
综上, 的解析式为 .
作出 的图像,可得增区间为 , ,减区间为 , .
点评:(1)求解析式时 的情况不能漏;(2)两个单调区间之间一般不用“ ”连接;(3)利用奇偶性求解析式一般是通过“ ”实现转化;(4)根据图像写单调区间.
【反馈演练】
1.已知定义域为R的函数 在区间 上为减函数,且函数 为偶函数,则( D )
A. B. C. D.
2. 在 上定义的函数 是偶函数,且 ,若 在区间 是减函数,则函数 ( B )
A.在区间 上是增函数,区间 上是增函数
B.在区间 上是增函数,区间 上是减函数
C.在区间 上是减函数,区间 上是增函数
D.在区间 上是减函数,区间 上是减函数
3. 设 ,则使函数 的定义域为R且为奇函数的所有 的值为____1,3 ___.
上一页 [1] [2] [3] [4] [5] [6] 下一页
- 高三数学教案:函数复习教案
- › 高三数学一轮备考指导及应对策略
- › 2016届高三数学第一轮复习方法
- › 高三数学第一轮复习指导:立体几何
- › 高三数学复习备考注意的五个方面
- › 高三数学复习知识点:轨迹方程的求解
- › 高三数学复习知识点:数列
- › 高三数学复习知识点:不等式
- › 高三数学复习知识点:导数
- › 高三数学复习口诀:立体几何
- › 高三数学复习口诀:平面解析几何
- › 高三数学复习口诀:复数
- › 高三数学复习口诀:不等式和数列
- 在百度中搜索相关文章:高三数学教案:函数复习教案
- 在谷歌中搜索相关文章:高三数学教案:函数复习教案
- 在soso中搜索相关文章:高三数学教案:函数复习教案
- 在搜狗中搜索相关文章:高三数学教案:函数复习教案