当前位置:考满分吧中小学教学高中学习网高三学习辅导高三数学复习高三数学教案理科高三数学教案:数列总复习» 正文

理科高三数学教案:数列总复习

[10-20 00:47:15]   来源:http://www.kmf8.com  高三数学教案   阅读:8256
概要: A.A10+B10 B.A10+B102 C.A10B10 D.A10B10【解析】n=1,c1=A1B1;n≥2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.总结提高1.常用的 基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5数列的综合应用典例精析题型一函数与数列的综合问题【例1】已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an)(n∈N*)是首项为4,公差为2的等差数列.(1)设a是常数,求证:{an}成等比数列;(2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn.【解析】(1)f(an)=4+(n-1)×2=2n+2,即logaan=2n+2,所以an=a2n+2,所以anan-1=a2n+2a2n=a2(n
理科高三数学教案:数列总复习,标签:高三数学教案模板,http://www.kmf8.com

A.A10+B10 B.A10+B102 C.A10B10 D.A10B10

【解析】n=1,c1=A1B1;n≥2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.

总结提高

1.常用的 基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.

2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.

6.5 数列的综合应用

典例精析

题型一 函数与数列的综合问题

【例1】已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an)(n∈N*)是首项为4,公差为2的等差数列.

(1)设a是常数,求证:{an}成等比数列;

(2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn.

【解析】(1)f(an)=4+(n-1)×2=2n+2,即logaan=2n+2,所以an=a2n+2,

所以anan-1=a2n+2a2n=a2(n≥2)为定值,所以{an}为等比数列.

(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,

当a=2时,bn=(2n+2) •(2)2n+2=(n+1) •2n+2,

Sn=2•23+3•24+4•25+…+(n+1 ) •2n+2,

2Sn=2•24+3•25+…+n•2n+2+(n+1)•2n+3,

两式相减得

-Sn=2•23+24+25+…+2n+2-(n+1)•2n+3=16+24(1-2n-1)1-2-(n+1)•2n+3,

所以Sn=n•2n+3.

【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.

【变式训练1】设函数f(x)=xm+ax的导函数f′(x)=2x+1,则数列{1f(n)}(n∈N*)的前n项和是(  )

A.nn+1 B.n+2n+1 C.nn+1 D.n+1n

【解析】由f′(x)=mxm-1+a=2x+1得m=2,a=1.

所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.

所以Sn=1-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1.故选C.

题型二 数列模型实际应用问题

【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.

(1)设全县面积为1,2009年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;

(2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?

【解析】(1)证明:由已知可得an 确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,

即an+1=80%an+16%=45an+425.

(2)由an+1=45an+425有,an+1-45=45(an-45),

又a1-45=-12≠0,所以an+1-45=-12•(45)n,即an+1=45-12•(45)n,

若an+1≥35,则有45-12•(45)n≥35,即(45)n-1≤12,(n-1)lg 45≤-lg 2,

(n-1)(2lg 2-lg 5)≤-lg 2,即(n-1)(3lg 2-1)≤-lg 2,

所以n≥1+lg 21-3lg 2>4,n∈N*,

所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.

【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.

【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是(  )

A.P(2 006)=402 B.P(2 007)= 403

C.P(2 008)=404 D.P(2 009)=405

【解析】考查数列的应用.构造数列{Pn},由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2 005)=401,P(2 006)=401+1=402,P(2 007)=401+1+1=403,P(2 008)=401+

3=404,P(2 009)=404-1=403.故D错.

题型三 数列中的探索性问题

【例3】{an},{bn}为两个数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.

(1)对n∈N*,若点M,An,Bn在同一直线上,求数列{an}的通项公式;

(2)若数列{bn}满足log2Cn=a1b1+a2b2+…+anbna1+a2+…+an,其中{Cn}是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),…,(n,bn)在同一直线上,并求此直线方程.

【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.

(2)由已知有Cn=22n-3,由log2Cn的表达式可知:

2(b1+2b2+…+nbn)=n(n+1)(2n-3),①

所以2[b1+2b2+…+(n-1)bn-1]=(n-1)n(2n-5).②

①-②得bn=3n-4,所以{bn}为等差数列.

故点列(1,b1),(2,b2),…,(n,bn)共线,直线方程为y=3x-4.

【变式训练3】已知等差数列{an}的首项a1及公差d都是整数,前n项和为Sn(n∈N*).若a1>1,a4>3,S3≤9,则通项公式an=    .

【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.

由a1>1,a4>3,S3≤9得

令x=a1,y=d得

在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.

总结提高

1.数列模型应用问题的求解策略

(1)认真审题,准确理解题意;

(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;

(3)验证、反思结果与实际是否相符.

2.数列综合问题的求解策略

(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;

(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.

【总结】最新一年年已经到来,新的一年www.kmf8.com也会为您收集更多更好的文章,希望本文“理科高三数学教案:数列总复习”能给您带来帮助!下面请看更多频道:

更多频道:

高中频道      高中英语学习

上一页  [1] [2] [3] [4] 


Tag:高三数学教案高三数学教案模板高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学教案
上一篇:理科高三数学教案:圆锥曲线与方程