当x∈[a+22,+∞)时,f′(x)=2x(x-a+22)x-1≥0,
所以a>0时,f(x)的减区间为(1,a+22],f(x)的增区间为[a+22,+∞).
【点拨】在定义域x>1下,为了判定f′(x)符号,必须讨论实数a+22与0及1的大小,分类讨论是解本题的关键.
【变式训练1】已知函数f(x)=x2+ln x-ax在(0,1)上是增函数,求a的取值范围.
【解析】因为f′(x)=2x+1x-a,f(x)在(0,1)上是增函数,
所以2x+1x-a≥0在(0,1)上恒成立,
即a≤2x+1x恒成立.
又2x+1x≥22(当且仅当x=22时,取等号).
所以a≤22,
故a的取值范围为(-∞,22].
【点拨】当f(x)在区间(a,b)上是增函数时⇒f′(x)≥0在(a,b)上恒成立;同样,当函数f(x)在区间(a,b)上为减函数时⇒f′(x)≤0在(a,b)上恒成立.然后就要根据不等式恒成立的条件来求参数的取值范围了.
题型二 求函数的极值
【例2】已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(1)试求常数a,b,c的值;
(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.
【解析】(1)f′(x)=3ax2+2bx+c.
因为x=±1是函数f(x)的极值点,
所以x=±1是方程f′(x)=0,即3ax2+2bx+c=0的两根.
由根与系数的关系,得
又f(1)=-1,所以a+b+c=-1. ③
由①②③解得a=12,b=0,c=-32.
(2)由(1)得f(x)=12x3-32x,
所以当f′(x)=32x2-32>0时,有x<-1或x>1;
当f′(x)=32x2-32<0时,有-1
所以函数f(x)=12x3-32x在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.
所以当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.
【点拨】求函数的极值应先求导数.对于多项式函数f(x)来讲, f(x)在点x=x0处取极值的必要条件是f′(x)=0.但是, 当x0满足f′(x0)=0时, f(x)在点x=x0处却未必取得极 值,只有在x0的两侧f(x)的导数异号时,x0才是f(x)的极值点.并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.
【变式训练2】定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-32)f′(x)<0,若x13,则有( )
A. f(x1)f(x2)
C. f(x1)=f(x2) D.不确定
【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),所以函数f(x)的图象关于x=32对称.又因为(x-32)f′(x)<0,所以当x>32时,函数f(x)单调递减,当x<32时,函数f(x)单调递增.当x1+x22=32时,f(x1)=f(x2),因为x1+x2>3,所以x1+x22>32,相当于x1,x2的中点向右偏离对称轴,所以f(x1)>f(x2).故选B.
题型三 求函数的最值
【例3】 求函数f(x)=ln(1+x)-14x2在区间[0,2]上的最大值和最小值.
【解析】f′(x)=11+x-12x,令11+x-12x=0,化简为x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.
又由f′(x)=11+x-12x>0,且x∈[0,2],得知函数f(x)的单调递增区间是(0,1),同理, 得知函数f(x)的单调递减区间是(1,2),所以f(1)=ln 2-14为函数f(x)的极大值.又因为f(0)=0,f(2)=ln 3-1>0,f(1)>f(2),所以,f(0)=0为函数f(x)在[0,2]上的最小值,f(1)=ln 2-14为函数f(x)在[0,2]上的最大值.
【点拨】求函数f(x)在某闭区间[a,b]上的最值,首先需求函数f(x)在开区间(a,b)内的极值,然后,将f(x)的各个极值与f(x)在闭区间上的端点的函数值f(a)、f(b)比较,才能得出函数f(x)在[a,b]上的最值.
【变式训练3】(2008江苏)f(x)=ax3-3x+1对x∈[-1,1]总有f(x)≥0成立,则a= .
【解析】若x=0,则无论a为 何值,f(x)≥0恒成立.
当x∈(0,1]时,f(x)≥0可以化为a≥3x2-1x3,
设g(x)=3x2-1x3,则g′(x)=3(1-2x)x4,
x∈(0,12)时,g′(x)>0,x∈(12,1]时,g′(x)<0.
因此g(x)max=g(12)=4,所以a≥4.
当x∈[-1,0)时,f(x)≥0可以化为
a≤3x2-1x3,此时g′(x)=3(1-2x)x4>0,
g(x)min=g(-1)=4,所以a≤4.
综上可知,a=4.
总结提高
1.求函数单调区间的步骤是:
(1)确定函数f(x)的定义域D;
(2)求导数f′(x);
(3)根据f′(x)>0,且x∈D,求得函数f(x)的单调递增区间;根据f′(x)<0,且x∈D,求得函数f(x)的单调递减区间.
2.求函数极值的步骤是:
(1)求导数f′(x);
(2)求方程f′(x)=0的根;
(3)判断f′(x)在方程根左右的值的符号,确定f(x)在这个根处取极大值还是取极小值.
3.求函数最值的步骤是:
先求f(x)在(a,b)内的极值;再将f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
3.3 导数的应用(二)
典例精析
题型一 利用导数证明不等式
【例1】已知函数f(x)=12x2+ln x.
(1)求函数f(x)在区间[1,e]上的值域;
(2)求证:x>1时,f(x)<23x3.
【解析】(1)由已知f′(x)=x+1x,
当x∈[1,e]时,f′(x)>0,因此f(x)在 [1,e]上为增函数.
故f(x)max=f(e)=e22+1,f(x)min=f(1)=12,
因而f(x)在区间[1,e]上的值域为[12,e22+1].
(2)证明:令F(x)=f(x)-23x3=-23x3+12x2+ln x,则F′(x)=x+1x-2x2=(1-x)(1+x+2x2)x,
因为x>1,所以F′(x)<0,
故F(x)在(1,+∞)上为减函数.
又F(1)=-16<0,
故x>1时,F(x)<0恒成立,
即f(x)<23x3.
【点拨】有关“超越性不等式”的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.
【变式训练1】已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时( )
- 理科高三数学教案:导数及其应用
- › 理科高三数学教案:复数总复习教学案
- › 理科高三数学教案:几何证明总复习
- › 理科高三数学教案:排列组合总复习
- › 理科高三数学教案:算法初步总复习
- › 理科高三数学教案:推理与证明总复习
- › 理科高三数学教案:统计案例总复习
- › 理科高三数学教案:导数及其应用
- › 理科高三数学教案:数列总复习
- › 理科高三数学教案:圆锥曲线与方程
- › 理科高三数学教案:一轮直线和圆的方程总
- › 理科高三数学教案:三角函数
- 在百度中搜索相关文章:理科高三数学教案:导数及其应用
- 在谷歌中搜索相关文章:理科高三数学教案:导数及其应用
- 在soso中搜索相关文章:理科高三数学教案:导数及其应用
- 在搜狗中搜索相关文章:理科高三数学教案:导数及其应用