当前位置:考满分吧中小学教学高中学习网高三学习辅导高三数学复习高三数学教案理科高三数学教案:算法初步总复习» 正文

理科高三数学教案:算法初步总复习

[10-20 00:47:15]   来源:http://www.kmf8.com  高三数学教案   阅读:8721
概要: 【解析】程序框图如下面的图一或图二.图一图二总结提高1.给出一个问题,设计算法时应注意:(1)认真分析问题,联系解决此问题的一般数学方法;(2)综合考虑此类问题中可能涉及的各种情况;(3)借助有关的变量或参数对算法加以表述;(4)将解决问题的过程划分为若干个步骤;(5)用简练的语言将各个步骤表示出来.2.循环结构有两种形式,即当型和直到型,这两种形式的循环结构在执行流程上有所不同,当型循环是当条件满足时执行循环体,不满足时退出循环体;而直到型循环则是当条件不满足时执行循环体,满足时退出循环体.所以判断框内的条件,是由两种循环语句确定的,不得随便更改.3.条件结构主要用在一些需要依据条件进行判断的算法中.如分段函数的求值,数据的大小关系等问题的算法设计.11.2基本算法语句典例精析题型一输入、输出与赋值语句的应用【例1】阅读程序框图(如下图),若输入m=4,n=6,则输出a=,i=.【解析】a=12,i=3.【点拨】赋值语句是一种重要的基本语句,也是程序必不可少的重要组成部分,使用赋值语句,要注意其格式要求.【变式训练1】(2010陕西)如图是求样本x1,x2,&he
理科高三数学教案:算法初步总复习,标签:高三数学教案模板,http://www.kmf8.com

【解析】程序框图如下面的图一或图二.

图一       图二

总结提高

1.给出一个问题,设计算法时应注意:

(1)认真分析问题,联系解决此问题的一般数学方法;

(2)综合考虑此类问题中可能涉及的各种情况;

(3)借助有关的变量或参数对算法加以表述;

(4)将解决问题的过程划分为若干个步骤;

(5)用简练的语言将各个步骤表示出来.

2.循环结构有两种形式,即当型和直到型,这两种形式的循环结构在执行流程上有所不同,当型循环是当条件满足时执行循环体,不满足时退出循环体;而直到型循环则是当条件不满足时执行循环体,满足时退出循环体.所以判断框内的条件,是由两种循环语句确定的,不得随便更改.

3.条件结构主要用在一些需要依据条件进行判断的算法中.如分段函数的求值,数据的大小关系等问题的算法设计.

11.2 基本算法语句

典例精析

题型一 输入、输出与赋值语句的应用

【例1】阅读程序框图(如下图),若输入m=4,n=6,则输出a=   ,i=   .

【解析】a=12,i=3.

【点拨】赋值语句是一种重要的基本语句,也是程序必不可少的重要组成部分,使用赋值语句,要注意其格式要求.

【变式训练1】(2010陕西)如图是求样本x1,x2,…,x10的平均数 的程序框图,则图中空白框中应填入的内容为(  )

A.S=S+xn B.S= S+xnn C.S=S+n D.S=S+ 1n

【解析】因为此步为求和,显然为S=S+xn,故选A.

题型二 循环语句的应用

【例2】设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,写出用基本语句编写的程序.

【解析】这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算 法.程序框图如下图所示:

程序如下:

s=0

k=1

DO

s=s+1/(k* (k+1))

k=k+1

LOOP UNTIL k>99

PRINT s

END

【点拨】(1)在用WHILE语句和UNTIL语句编写程序解决问题时,一定要注意格式和条件的表述方法,WHILE语句是当条件满足时执行循环体,UNTIL语句是当条件不满足时执行循环体.

(2)在解决一些需要反复执行的运算任务,如累加求 和、累乘求积等问题中应注意考虑利用循环语句来实现.

(3)在循环语句中,也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套的这些语句,保证语句的完整性,否则就会造成程序无法执行.

【变式训练2】下图是输出某个有限数列各项的程序框图,则该框图所输出的最后一个数据是    .

【解析】由程序框图可知,当N=1时,A=1;N=2时,A=13;N=3时,A=15,…,即输出各个A值的分母是以1为首项以2为公差的等差数列,故当N=50时,A=11+(50-1)×2=199,即为框图最后输出的一个数据.故填199.

题型三 算法语句的实际应用

【例3】某电信部门规定:拨打市内电话时,如果通话时间3分钟以内,收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话不足1分钟时按1分钟计算).试设计一个计算通话费用的算法,要求写出算法,编写程序.

【解析】我们用c(单位:元)表示通话费,t(单位:分钟)表示通话时间,

则依题意有

算法步骤如下:

第一步,输入通话时间t.

第二步,如果t≤3,那么c=0.2;否则c=0.2+0.1×[t-2].

第三步,输出通话费用c.

程序如下:

INPUT t

IF t<3 THEN

c=0.2

ELSE

c=0.2+0.1*INT(t-2)

END IF

PRINT c

END

【点拨】在解决实际问题时,要正确理解其中的算法思想,根据题目写出其关系式,再写出相应的算法步骤,画出程序框图,最后准确地编写出程序,同时要注意结合题意加深对算法的理解.

【变式训练3】(2010江苏)下图是一个算法流程图,则输出S的值是    .

【解析】n=1时,S=3;n=2时,S=3+4=7;n=3时,S=7+8=15;n=4时,S=15+24=31;n=5时,S=31+25=63.因为63≥33,所以输出的S值为63.

总结提高

1.输入、输出语句可以设计提示信息,加引号表示出来,与变量之间用分号隔开.

2.赋值语句的赋值号左边只能是变量而不能是表达式;赋值号左右两边不能对换,不能利用赋值语句进行代数式计算,利用赋值语句可以实 现两个变量值的互换,方法是引进第三个变量,用三个赋值语句完成.

3.在某些算法中,根据需要,在条件语句的THEN分支或ELSE分支中又可以包含条件语句.遇到这样的问题,要分清内外条件结构,保证结构的完整性.

4.分清WHILE语句和UNTIL语句的格式,在解决一些需要反复执行的运算任务,如累加求和,累乘求积等问题中应主要考虑利用循环语句来实现,但也要结合其他语句如条件语句.

5.编程的一般步骤:

(1)算法分析;(2)画出程序框图;(3)写出程序.

11.3 算法案例

典例精析

题型一 求最大公约数

【例1】(1)用辗转相除法求840与1 764的最大公约数;

(2)用更相减损术求440与556的最大公约数.

【解析】(1)用辗转相除法求840与1 764的最大公约数:

1 764=840×2+84,

840=84×10+0.

所以840与1 764的最大公约数是84.

(2)用更相减损术求440与556的最大公约数:

556-440=116,

440-116=324,

324-116=208,

208-116=92,

116-92=24,

92-24=68,

68-24=44,

44-24=20,

24-20=4,

20-4=16,

16-4=12,

12-4=8,

8-4=4.

所以440与556的最大公约数是4.

【点拨】(1)辗转相除法与更相减损术是求两个正整数的最大公约数的方法,辗转相除法用较大的数除以较小的数,直到大数被小数除尽结 束运算,较小的数就是最大公约数;更相减损术是用两数中较大的数减去较小的数,直到所得的差和较小数相等为止,这个较小数就是这两个数的最大公约数.一般情况下,辗转相除法步骤较少,而更相减损术步骤较多,但运算简易,解题时要灵活运用.

(2)两个以上的数求最大公约数,先求其中两个数的最大公约数,再用所得的公约数与其他各数求最大公约数即可.

上一页  [1] [2] [3]  下一页


Tag:高三数学教案高三数学教案模板高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学教案
上一篇:理科高三数学教案:推理与证明总复习