例51.求证: .
解析: ,∵ ,
时, , , ∴ , .
利用定积分估计和式的上下界
定积分产生和应用的一个主要背景是计算曲边梯形的面积,现在用它来估计小矩形的面积和.
例52. 求证: , .
解析: 考虑函数 在区间 上的定积分.
如图,显然 -①
对 求和,
.
例53. 已知 .求证: .
解析:考虑函数 在区间 上的定积分.
∵ -②
∴ .
例54. (2003年全国高考江苏卷)设 ,如图,已知直线 及曲线 : , 上的点 的横坐标为 ( ).从 上的点 作直线平行于 轴,交直线 于点 ,再从点 作直线平行于 轴,交曲线 于点 . 的横坐标构成数列 .
(Ⅰ)试求 与 的关系,并求 的通项公式;
(Ⅱ)当 时,证明 ;
(Ⅲ)当 时,证明 .
解析: (过程略).
证明(II):由 知 ,∵ ,∴ .
∵当 时, ,
∴ .
证明(Ⅲ):由 知 .
∴ 恰表示阴影部分面积,
显然 ④
∴ .
奇巧积累: 将定积分构建的不等式略加改造即得“初等”证明,如:
① ;
② ;
③ ;
④ .
十二、部分放缩(尾式放缩)
例55.求证:
解析:
例56. 设 求证:
解析:
又 (只将其中一个 变成 ,进行部分放缩), ,
于是
例57.设数列 满足 ,当 时
证明对所有 有 ;
解析: 用数学归纳法:当 时显然成立,假设当 时成立即 ,则当 时
,成立。
利用上述部分放缩的结论 来放缩通项,可得
注:上述证明 用到部分放缩,当然根据不等式的性质也可以整体放缩: ;证明 就直接使用了部分放缩的结论
十三、三角不等式的放缩
例58.求证: .
解析:(i)当 时,
(ii)当 时,构造单位圆,如图所示:
因为三角形AOB的面积小于扇形OAB的面积
所以可以得到
当 时
所以当 时 有
(iii)当 时, ,由(ii)可知:
所以综上有
十四、使用加强命题法证明不等式
(i)同侧加强
对所证不等式的同一方向(可以是左侧,也可以是右侧)进行加强.如要证明 ,只要证明 ,其中 通过寻找分析,归纳完成.
例59.求证:对一切 ,都有 .
解析:
从而
当然本题还可以使用其他方法,如:
所以 .
(ii)异侧加强(数学归纳法)
(iii)双向加强
有些不等式,往往是某个一般性命题的特殊情况,这时,不妨”返璞归真”,通过双向加强还原其本来面目,从而顺利解决原不等式.其基本原理为:
欲证明 ,只要证明: .
例60.已知数列 满足: ,求证:
解析: ,从而 ,所以有
,所以
又 ,所以 ,所以有
所以
所以综上有
引申:已知数列 满足: ,求证: .
解析:由上可知 ,又 ,所以
从而
又当 时, ,所以综上有 .
同题引申: (2008年浙江高考试题)已知数列 , , , .
记 , .求证:当 时.
(1) ; (2) ; ★(3) .
解析:(1) ,猜想 ,下面用数学归纳法证明:
(i)当 时, ,结论成立;
(ii)假设当 时, ,则 时,
从而 ,所以
所以综上有 ,故
(2)因为 则 , ,…, ,相加后可以得到: ,所以
,所以
(3)因为 ,从而 ,有 ,所以有
,从而
,所以
,所以
所以综上有 .
例61.(2008年陕西省高考试题)已知数列 的首项 , , .
(1)证明:对任意的 , , ;
(2)证明: .
解析:(1)依题,容易得到 ,要证 , , ,
即证
即证 ,设 所以即证明
从而 ,即 ,这是显然成立的.
所以综上有对任意的 , ,
(法二)
, 原不等式成立.
(2)由(1)知,对任意的 ,有
.
取 ,
则 .
原不等式成立.
十四、经典题目方法探究
探究1.(2008年福建省高考)已知函数 .若 在区间 上的最小值为 ,
令 .求证: .
证明:首先:可以得到 .先证明
(方法一) 所以
(方法二)因为 ,相乘得:
,从而 .
(方法三)设A= ,B= ,因为A
所以 , 从而 .
下面介绍几种方法证明
(方法一)因为 ,所以 ,所以有
(方法二) ,因为 ,所以
令 ,可以得到 ,所以有
(方法三)设 所以 ,
从而 ,从而
又 ,所以
(方法四)运用数学归纳法证明:
(i)当 时,左边= ,右边= 显然不等式成立;
(ii)假设 时, ,则 时, ,
所以要证明 ,只要证明 ,这是成立的.
这就是说当 时,不等式也成立,所以,综上有
探究2.(2008年全国二卷)设函数 .如果对任何 ,都有 ,求 的取值范围.
解析:因为 ,所以
设 ,则 ,
因为 ,所以
(i)当 时, 恒成立,即 ,所以当 时, 恒成立.
(ii)当 时, ,因此当 时,不符合题意.
(iii)当 时,令 ,则 故当 时, .
因此 在 上单调增加.故当 时, ,
即 .于是,当 时,
所以综上有 的取值范围是
变式:若 ,其中
且 , ,求证:
.
证明:容易得到
由上面那个题目知道
就可以知道
★同型衍变:(2006年全国一卷)已知函数 .若对任意 x∈(0,1) 恒有 f (x) >1, 求 a的取值范围.
解析:函数f (x)的定义域为(-∞, 1)∪(1, +∞), 导数为 .
(ⅰ) 当0< a≤2时, f (x) 在区间 (-∞, 1) 为增函数, 故对于任意x∈(0, 1) 恒有 f (x) > f (0) =1, 因而这时a满足要求.
(ⅱ) 当a>2时, f (x) 在区间 (- , )为减函数, 故在区间(0, ) 内任取一点, 比如取 , 就有 x0∈(0, 1) 且 f (x0) < f (0) =1, 因而这时a不满足要求.
(ⅲ) 当a≤0时, 对于任意x∈(0, 1) 恒有
≥ , 这时a满足要求.
综上可知, 所求 a的取值范围为 a≤2.
【总结】最新一年年已经到来,新的一年www.kmf8.com也会为您收集更多更好的文章,希望本文“高三数学教案:压轴题放缩法技巧全总结”能给您带来帮助!下面请看更多频道:
更多频道:
高中频道 高中英语学习
- 高三数学教案:压轴题放缩法技巧全总结
- › 高三数学一轮备考指导及应对策略
- › 2016届高三数学第一轮复习方法
- › 高三数学第一轮复习指导:立体几何
- › 高三数学复习备考注意的五个方面
- › 高三数学复习知识点:轨迹方程的求解
- › 高三数学复习知识点:数列
- › 高三数学复习知识点:不等式
- › 高三数学复习知识点:导数
- › 高三数学复习口诀:立体几何
- › 高三数学复习口诀:平面解析几何
- › 高三数学复习口诀:复数
- › 高三数学复习口诀:不等式和数列
- 在百度中搜索相关文章:高三数学教案:压轴题放缩法技巧全总结
- 在谷歌中搜索相关文章:高三数学教案:压轴题放缩法技巧全总结
- 在soso中搜索相关文章:高三数学教案:压轴题放缩法技巧全总结
- 在搜狗中搜索相关文章:高三数学教案:压轴题放缩法技巧全总结