当前位置:考满分吧中小学教学高中学习网高三学习辅导高三数学复习高三数学知识点数学高分秘诀:训练数学思维变通性» 正文

数学高分秘诀:训练数学思维变通性

[10-20 00:47:15]   来源:http://www.kmf8.com  高三数学知识点   阅读:8114
概要: 1 转化成容易解决的明显题目思维障碍 很多学生只在已知条件上下功夫,左变右变,还是不知如何证明三者中至少有一个为1,其原因是不能把要证的结论“翻译”成数学式子,把陌生问题变为熟悉问题。因此,多练习这种“翻译”,是提高转化能力的一种有效手段。2 逆向思维的训练逆向思维也称为必要性思维。不是按习惯思维方向进行思考,而是从其反方向进行思考的一种思维方式。当问题的正面考虑有阻碍时,应考虑问题的反面,从反面入手,使问题得到解决。问题的思考角度为:要想得到这个结论,所需要的前提条件是?不断逆推,直到条件可以利用。思路分析 反证法被誉为“数学家最精良的武器之一”,它也是中学数学常用的解题方法。当要证结论中有“至少”等字样,或以否定形式给出时,一般可考虑采用反证法。解析:题目要证明至少有一个不小于1,那么我们不妨假定三者全部小于1,带入验证,发现结果不成立,从而肯定了“至少一个小于1”的结论。用必要性思维进行表达:至少有一个不小于1=如果全部小于1,则不成立。
数学高分秘诀:训练数学思维变通性,标签:高三数学知识点总结,http://www.kmf8.com

1 转化成容易解决的明显题目

玖久高考:解密高考数学尖子生解题思维

思维障碍 很多学生只在已知条件上下功夫,左变右变,还是不知如何证明三者中至少有一个为1,其原因是不能把要证的结论“翻译”成数学式子,把陌生问题变为熟悉问题。因此,多练习这种“翻译”,是提高转化能力的一种有效手段。

2 逆向思维的训练

逆向思维也称为必要性思维。不是按习惯思维方向进行思考,而是从其反方向进行思考的一种思维方式。当问题的正面考虑有阻碍时,应考虑问题的反面,从反面入手,使问题得到解决。

问题的思考角度为:要想得到这个结论,所需要的前提条件是?不断逆推,直到条件可以利用。

玖久高考:解密高考数学尖子生解题思维

思路分析 反证法被誉为“数学家最精良的武器之一”,它也是中学数学常用的解题方法。当要证结论中有“至少”等字样,或以否定形式给出时,一般可考虑采用反证法。

解析:题目要证明至少有一个不小于1,那么我们不妨假定三者全部小于1,带入验证,发现结果不成立,从而肯定了“至少一个小于1”的结论。用必要性思维进行表达:至少有一个不小于1=如果全部小于1,则不成立。前面的全部例子都可以用必要性思维进行验证。

3 一题多解训练与一解多题训练

由于每个学生在观察时抓住问题的特点不同、运用的知识不同,因而,同一问题可能得到几种不同的解法,这就是“一题多解”。通过一题多解训练,可使学生认真观察、多方联想、恰当转化,提高数学思维的变通性。这类题型太多,我就不举例子。

在整理大量题的过程中,我们会发现,很多题型虽然考法不同,应用知识点不同,考察形式风马牛不相及,但是整体的思路非常趋于一致!那么这种思路就是“一解多题”的思路。其实一解多题并不神秘,相反非常简单。我们看前面的例题,第一道题求和的思路是,把结论换成熟悉的公式,即简化思想。或者用逆向思维,要想求得这个结论,必须得出什么条件……第二个例题求方程组的思路是,把方程组转化为我们所熟悉的一元二次方程,也是简化思想……再看后面的题,解题过程如果从正向角度而言,不外乎是简化,推导、应用知识点。如果从逆向思维来考虑,也是找到入手点,寻找问题成立或不成立的前提,然后转化条件……这就是一解多题的思想。当然,这里的“解”指的是思路,而不是固定的方法。如果抛却题目难度和知识点的差异,甚至解题的步骤都趋于一致。

【总结】:“数学高分秘诀:训练数学思维变通性 ”到这里就为您介绍完毕了,怎么样,看了之后是不是受益良多呢?想要了解更多高三备考指导,请继续关注www.kmf8.com高中频道。

更多精彩内容推荐:

最新高考第一轮复习策略:提高复习效率 

www.kmf8.com

上一页  [1] [2] 


Tag:高三数学知识点高三数学知识点总结高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学知识点
上一篇:高三数学备考秘籍:选择题答题思路解析