解:甲做3天相当于乙做5天,那么完成全工程的时间比是3:5。 甲和乙所用的时间相差3+5=8天。 所以,
甲单独做完成全工程需要8÷(5-3)×3=12天,
乙单独做完成全工程需要12+8=20天。
所以,两人合作需要1÷(1/12+1/20)=7.5天。
118. 甲、乙两人同时从A地出发,以相同的速度向B地前进,甲每行5分钟休息2分钟,乙每行210米休息3分钟,甲出发后50分钟到达B地,乙到达B地比甲迟了10分钟.已知两人最后一次的休息地点相距70米,两人的速度是多少?
解:甲50÷(5+2)=7次……1分钟,说明甲休息了7次共2×7=14分钟。
乙休息了14+10=24分钟,休息了24÷3=8次。
乙行到甲最后休息的地方时,行了210×8+70=1750米,实际行了5×7=35分。
所以实际的速度是1750÷35=50米/秒。
全程就是50×(50-14)=1800米。
平均速度:甲1800÷50=36米/秒,乙1800÷(50+10)=30米/秒。
解:甲用50分钟,所以是走了7个5分钟,休息了7个2分钟,最后又走了1分钟。有效行进时间是36分。
因为甲乙速度相同,所以乙行走的有效时间也是36分钟,走到甲的最后休息点有效行进时间是36-1=35分钟;
因为乙一共使用了60分钟,所以有24分钟在休息,共休息了8次,其间行走了210*8=1680米,加上两人最后一次的休息地点之间70米,共计1750米。
所以乙在35分钟的有效行进时间内可以前进1750米,甲乙的【行进速度】均为1750/35=50米/分钟。 可以计算出:AB距离为50*36=1800米。
所以:
甲完成这段路程的【平均速度】是1800/50=36米/分钟
乙完成这段路程的【平均速度】是1800/60=30米/分钟
119. 有甲、乙两袋大米,甲袋中的大米比乙袋中的多20千克,把甲袋中大米的1/3到进乙袋,乙袋中的大米就比甲袋中的大米多10千克.甲袋中原有大米多少千克?
解:要使乙袋比甲袋多10千克, 就得从甲袋拿出(10+20)÷2=15千克。
说明这15千克相当于甲袋的1/3, 所以甲袋有15÷1/3=45千克。
120. 有两堆煤共重8.1吨,第一堆用掉2/3,第二堆用掉3/5,把两堆剩下的合在一起,比原来第一堆还少1/6,原来第一堆煤有多少吨?
解:
解:用掉后,第一堆煤剩下1/3,第二堆煤剩下2/5,
两堆剩下的合在一起后,占原来第一堆的1-1/6=5/6.
这其中有1/3是原来第一堆剩下的,其余的5/6-1/3=1/2是原来第二堆剩下的.
也就是说原来第二堆的2/5等于第一堆的1/2.
所以原来第二堆的总数是原来第一堆的1/2÷2/5=5/4倍.
所以原来第一堆煤有:8.1÷(1+5/4)=3.6吨
解:如果第一堆用掉2/3-1/6=1/2,
这用了的1/2就和第二堆剩下的1-3/5=2/5相等。
所以,第二堆是第一堆的1/2÷2/5=5/4。
所以,第一堆煤有8.1÷(1+5/4)=3.6吨
有关应用题综合训练的冲刺小升初12由www.kmf8.com独家发布,敬请同学们关注!
浏览本文的同学还看了:
小升初奥数知识点:列方程解应用题
小升初总复习---数的整除
有关小升初奥数的问答---运算顺序
小升初数学复习资料(统计图)
小升初必看奥数问答:货币
- 有关应用题综合训练的冲刺小升初12
- › 有关应用题的小升初冲刺训练(24)
- › 有关应用题综合训练的小升初综合练习试题(19)
- › 有关应用题综合训练的冲刺小升初14
- › 有关应用题综合训练的冲刺小升初12
- 在百度中搜索相关文章:有关应用题综合训练的冲刺小升初12
- 在谷歌中搜索相关文章:有关应用题综合训练的冲刺小升初12
- 在soso中搜索相关文章:有关应用题综合训练的冲刺小升初12
- 在搜狗中搜索相关文章:有关应用题综合训练的冲刺小升初12