当前位置:考满分吧中小学教学初中学习网初一学习辅导初一数学辅导资料初一数学教案第二课时:整式(2)教案» 正文

第二课时:整式(2)教案

[10-20 00:29:14]   来源:http://www.kmf8.com  初一数学教案   阅读:8580
概要: 教学目标和要求:1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.3.初步体会类比和逆向思维的数学思想.教学重点和难点:重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.难点:多项式的次数.教学过程:一、复习引入:观察以上所得出的四个代数式与上节课所学单项式有何区别.(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)二、讲授新课:1.多项式:由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constant term).例如
第二课时:整式(2)教案,标签:初一数学教案模板,http://www.kmf8.com

教学目标和要求:

1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.

2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.

3.初步体会类比和逆向思维的数学思想.

教学重点和难点:

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.

难点:多项式的次数.

教学过程:

一、复习引入:

观察以上所得出的四个代数式与上节课所学单项式有何区别.

(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)

二、讲授新课:

1.多项式:

由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constant term).例如,多项式3x2?2x+5有三项,它们是3x2,-2x,5.其中5是常数项.

一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2?2x+5是一个二次三项式.

注意:

(1)多项式的次数不是所有项的次数之和;

(2)多项式的每一项都包括它前面的符号.

(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.)

2.例题:

例1:判断:

①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;

②多项式3n4-2n2+1的次数为4,常数项为1.

(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数.)

www.kmf8.com

例2:指出下列多项式的项和次数:

(1)3x-1+3x2;             (2)4x3+2x-2y2.

解:(1)三项,二次;(2)三项,三次.

例3:指出下列多项式是几次几项式.

(1)x3-x+1;                 (2)x3-2x2y2+3y2.

解:(1)三次三项式;(2)四次三次式.

例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件.

解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n = 3;而该多项式至少有两项3xn和1,当m?1≠0时,该多项式即为三项式,与已知不符,所以m = 1.

(让学生口答例2、例3,老师在黑板上规范书写格式.讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式(integral expression).例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.)

三、课堂小结:

①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.

②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.

(让学生小结,师生进行补充.)

教学后记:

从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点.掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性.最后列举几个例子,与学生一起完成.教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成.要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识.


Tag:初一数学教案初一数学教案模板初中学习网 - 初一学习辅导 - 初一数学辅导资料 - 初一数学教案
上一篇:第一课时:整式