当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷中考数学方程(组)和不等式(组)试题(含答案)» 正文

中考数学方程(组)和不等式(组)试题(含答案)

[10-20 00:48:49]   来源:http://www.kmf8.com  初三数学试卷   阅读:8136
概要: 所以甲乙两种票的单价分别是24元、18元。(2)设甲票有y张,根据题意得,24x+18(36-x)≤750x>15,解得15∵x为整数,∴x=16或17。所以有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张。【考点】一元一次不等式组的应用,一元一次方程的应用。【分析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可。(2)设甲种票有y张,则乙种票(36﹣x)张,根据购买的钱不超过750元和购买甲种票必须多于15张得到两个不等式,求出它们的公共部分,然后找出其中的整数,即可得到购买方案。12.(内蒙古包头10分)为了鼓励城市周边的农民的种菜的积极性,某公司计划新建A,B两种温室80栋,将其中售给农民种菜.该公司建设温室所筹资金不少于209.6万元,但不超过210.2万元.且所筹资金全部用于新建温室.两种温室的成本和出售价如下表:A型 B型成本(万元/栋) 2.5 2.8出售价(万元/栋) 3.1 3.5(1)这两种温室有几种设计方案?(2)根据市场调查
中考数学方程(组)和不等式(组)试题(含答案),标签:初三数学试卷分析,http://www.kmf8.com

所以甲乙两种票的单价分别是24元、18元。

(2)设甲票有y张,根据题意得,24x+18(36-x)≤750x>15,

解得15

∵x为整数,∴x=16或17。

所以有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张。

【考点】一元一次不等式组的应用,一元一次方程的应用。

【分析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可。

(2)设甲种票有y张,则乙种票(36﹣x)张,根据购买的钱不超过750元和购买甲种票必须多于15张得到两个不等式,求出它们的公共部分,然后找出其中的整数,即可得到购买方案。

12.(内蒙古包头10分)为了鼓励城市周边的农民的种菜的积极性,某公司计划新建A,B两种温室80栋,将其中售给农民种菜.该公司建设温室所筹资金不少于209.6万元,但不超过210.2万元.且所筹资金全部用于新建温室.两种温室的成本和出售价如下表:

A型 B型

成本(万元/栋) 2.5 2.8

出售价(万元/栋) 3.1 3.5

(1)这两种温室有几种设计方案?

(2)根据市场调查,每栋A型温室的售价不会改变,每栋B型温室的售价可降低m万元(0

【答案】解:(1)设A种户型的住房建x套,则B种户型的住房建(80﹣x)套.

由题意知209.6≤2.5x+2.8(80﹣x)≤210.2。

解得46≤x≤48。

∵x取非负整数,∴x为46,47,48。

∴有三种建房方案:

方案一:A种户型的住房建46套,B种户型的住房建34套;

方案二:A种户型的住房建47套,B种户型的住房建33套;

方案三:A种户型的住房建48套,B种户型的住房建32套。

(2)由题意知W=(5+m)x+6(80-x)=(m-1)x+480,

∴当0

∴A型建48套,B型建32套。

【考点】一元一次不等式和一次函数的应用。

【分析】(1)根据“该公司建设温室所筹资金不少于209.6万元,但不超过210.2万元”,列出不等式进行求解,确定建房方案。

(2)利润W可以用含a的代数式表示出来,对m进行分类讨论。

13.(内蒙古乌兰察布10分)某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎 宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.

(l)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;

(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?

【答案】解:(1)设搭配A种造型 个,则搭配B种造型 个,得

,解得: ,

∵ 为正整数,∴ 取29,30,31,32,33。

∴共有五种方案:

方案一:A:29,B:21;方案二:A:30,B:20;

方案三:A:31,B:19;方案四:A:32,B:18;

方案五:A:33,B:17。

(2)设费用为y,则 。

∵ ,∴y随x的增大而减小。

∴当 时,即方案五的成本最低,最低成本= 。

【考点】一元一次不等式组和一次函数的应用。

【分析】(1)根据题意列出一元一次不等式组,直接解一元一次不等式组,然后取整数解即可得出答案。

(2)求出费用y关于A种造型 个的函数关系式,根据函数的增减性确定成本最低的方案即可。

14.(内蒙古呼伦贝尔10分)某工程机械厂根据市场要求,计划生产A、B两种型号的大型挖掘

型号 A B

成本(万元/台) 200 240

售价(万元/台) 250 300

机共100台,该厂所筹生产资金不少于22400万元,

但不超过22500万元,且所筹资金全部用于生产这两种型号的挖掘机,所生产的这两种型号的挖掘机可全部售出,此两种型号挖掘机的生产成本和售价如下表所示:

(1该厂对这两种型号挖掘机有几种生产方案?

(2)该厂如何生产获得最大利润?

(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高 万元( >0),该厂如何生产可以获得最大利润?(注:利润=售价-成本)

【答案】解:(1)设生产A型挖掘机 台,则B型挖掘机可生产( 台,

由题意知: ,

解得: 。

∵ 取非负整数,∴ 为38、39、40 。

∴有三种生产方案:A型38台,B型62台;

A型39台,B型61台;

A型40台,B型60台。

(2)设获得利润为W(万元),

由题意知:W

∴当 =38时, W 最大=5620(万元),即生产A型38台,B型62台时,获得利润最大。

(3)由题意知:W

∴当0< <10时,取 =38,W 最大,即A型挖掘机生产38台,B型挖掘机生产62台

当 =0,三种生产获得利润相等;

当 >10时,取 =40,W最大,即A型挖掘机生产40台,B型生产60台。

【考点】一元一次不等式组和一次函数的应用。

【分析】(1)根据题意列出一元一次不等式组,直接解一元一次不等式组,然后取整数解即可得出答案。

(2)求出利润为W关于A型挖掘机 台的函数关系式,根据函数的增减性确定得最大利润的方案即可。

  www.kmf8.com

上一页  [1] [2] [3] 


Tag:初三数学试卷初三数学试卷分析初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
上一篇:2016年中考数学试题圆考点归类