在求线性目标函数z=ax+by的最大值或最小值时,设ax+by=t,则此直线往右(或左)平移时,t值随之增大(或减小),要会在可行域中确定最优解.
解线性规划应用题步骤:(1)设出决策变量,找出线性约束条件和线性目标函数; (2)利用图象在线性约束条件下找出决策变量,使线性目标函数达到最大(或最小).
拓展题例
【例1】 已知f(x)=px2-q且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的范围.
解:∵-4≤f(1)≤-1,-1≤f(2)≤5,
p-q≤-1,
p-q≥-4,
4p-q≤5,
4p-q≥-1.
求z=9p-q的最值.
p=0,
q=1,
zmin=-1,
p=3,
q=7,
∴-1≤f(3)≤20.
【例2】 某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?
解:设A厂工作x h,B厂工作y h,总工作时数为t h,则t=x+y,且x+3y≥40,2x+y≥20,x≥0,y≥0,可行解区域如图.而符合问题的解为此区域内的格子点(纵、横坐标都是整数的点称为格子点),于是问题变为要在此可行解区域内,找出格子点(x,y),使t=x+y的值为最小.
由图知当直线l:y=-x+t过Q点时,纵、横截距t最小,但由于符合题意的解必须是格子点,我们还必须看Q点是否是格子点.
x+3y=40,
2x+y=20,
得Q(4,12)为格子点.
故A厂工作4 h,B厂工作12 h,可使所费的总工作时数最少.
【总结】最新一年年已经到来,新的一年www.kmf8.com也会为您收集更多更好的文章,希望本文“高三数学教案:简单的线性规划”能给您带来帮助!下面请看更多频道:
更多频道:
高中频道 高中英语学习
- 高三数学教案:简单的线性规划
- › 高三数学一轮备考指导及应对策略
- › 2016届高三数学第一轮复习方法
- › 高三数学第一轮复习指导:立体几何
- › 高三数学复习备考注意的五个方面
- › 高三数学复习知识点:轨迹方程的求解
- › 高三数学复习知识点:数列
- › 高三数学复习知识点:不等式
- › 高三数学复习知识点:导数
- › 高三数学复习口诀:立体几何
- › 高三数学复习口诀:平面解析几何
- › 高三数学复习口诀:复数
- › 高三数学复习口诀:不等式和数列
- 在百度中搜索相关文章:高三数学教案:简单的线性规划
- 在谷歌中搜索相关文章:高三数学教案:简单的线性规划
- 在soso中搜索相关文章:高三数学教案:简单的线性规划
- 在搜狗中搜索相关文章:高三数学教案:简单的线性规划