当前位置:考满分吧中小学教学高中学习网高三学习辅导高三数学复习高三数学教案高三理科数学复习教案:三角函数总复习教学案» 正文

高三理科数学复习教案:三角函数总复习教学案

[10-20 00:47:15]   来源:http://www.kmf8.com  高三数学教案   阅读:8793
概要: 【例2】已知函数f(x)=sin2ωx+3sin ωxsin(ωx+π2)+2cos2ωx,x∈R(ω>0)在y轴右侧的第一个最高点的横坐标为π6.(1)求ω的值;(2)若将函数f(x)的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.【解析】(1)f(x)=32sin 2ωx+12cos 2ωx+32=sin(2ωx+π6)+32.令2ωx+π6=π2,将x=π6代入可得ω=1.(2)由(1)得f(x)=sin(2x+π6)+32,经过题设的变化得到函数g(x)=sin(12x-π6)+32,当x=4kπ+43π,k∈Z时,函数g(x)取得最大值52.令2kπ+π2≤12x-π6≤2kπ+32π,即[4k
高三理科数学复习教案:三角函数总复习教学案,标签:高三数学教案模板,http://www.kmf8.com

【例2】已知函数f(x)=sin2ωx+3sin ωxsin(ωx+π2)+2cos2ωx,x∈R(ω>0)在y轴右侧的第一个最高点的横坐标为π6.

(1)求ω的值;

(2)若将函数f(x)的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.

【解析】(1)f(x)=32sin 2ωx+12cos 2ωx+32=sin(2ωx+π6)+32.

令2ωx+π6=π2,将x=π6代入可得ω=1.

(2)由(1)得f(x)=sin(2x+π6)+32,经过题设的变化得到函数g(x)=sin(12x-π6)+32,

当x=4kπ+43π,k∈Z时,函数g(x)取得最大值52.

令2kπ+π2≤12x-π6≤2kπ+32π,

即[4kπ+4π3,4kπ+103π](k∈Z)为函数的单调递减区间.

【点拨】本题考查三角函数恒等变换公式的应用、三角函数图象性质及变换.

【变式训练2】若将函数y=2sin(3x+φ)的图象向右平移π4个单位后得到的图象关于点(π3,0)对称,则|φ|的最小值是(  )

A.π4 B.π3 C.π2 D.3π4

【解析】将函数y=2sin(3x+φ)的图象向右平移π4个单位后得到y=2sin[3(x-π4)+φ]=2sin(3x-3π4+φ)的图象.

因为该函数的图象关于点(π3,0)对称,所以2sin(3×π3-3π4+φ)=2sin(π4+φ)=0,

故有π4+φ=kπ(k∈Z),解得φ=kπ-π4(k∈Z).

当k=0时,|φ|取得最小值π4,故选A.

题型三 三角函数的综合应用

【例3】已知函数y=f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<π2)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).

(1)求φ的值;

(2)求f(1)+f(2)+…+f(2 008).

【解析】(1)y=Asin2(ωx+φ)=A2-A2cos(2ωx+2φ),

因为y=f(x)的最大值为2,又A>0,

所以A2+A2=2,所以A=2,

又因为其图象相邻两对称轴间的距离为2,ω>0,

所以12×2π2ω=2,所以ω=π4.

所以f(x)=22-22cos(π2x+2φ)=1-cos(π2x+2φ),

因为y=f(x)过点(1,2),所以cos(π2+2φ)=-1.

所以π2+2φ=2kπ+π(k∈Z),

解得φ=kπ+π4(k∈Z),

又因为0<φ<π2,所以φ=π4.

(2)方法一:因为φ=π4,

所以y=1-cos(π2x+π2)=1+sin π2x,

所以f(1)+f(2)+f(3)+f(4)=2+1+0+1=4,

又因为y=f(x)的周期为4,2 008=4×502.

上一页  [1] [2] [3] [4] [5] 


Tag:高三数学教案高三数学教案模板高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学教案
上一篇:高三数学复习教案:高考数学空间向量及其应用复习学案