(2)Tn=2n+n-1.
6.数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,(n∈N*).
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn;
(3)设bn= (n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn> 成立?若存在,求出m的值;若不存在,说明理由.
解:(1)由an+2=2an+1-an an+2-an+1=an+1-an可知{an}成等差数列,
d= =-2,∴an=10-2n.
(2)由an=10-2n≥0可得n≤5,当n≤5时,Sn=-n2+9n,当n>5时,Sn=n2-9n+40,
故Sn=
(3)bn=
;要使Tn> 总成立,需
第4课 数列的应用
【考点导读】
1.能在具体的问题情景中发现数列的等差、等比关系,并能用有关知识解决相应的问题。
2.注意基本数学思想方法的运用,构造思想:已知数列构造新数列,转化思想:将非等差、等比数列转化为等差、等比数列。
【基础练习】
1.若数列 中, ,且对任意的正整数 、 都有 ,则 .
2.设等比数列 的公比为 ,前 项和为 ,若 成等差数列,则 的值为 。
3.已知等差数列 的公差为2,若 成等比数列,则 。
【范例导析】
例1.已知正数组成的两个数列 ,若 是关于 的方程 的两根
(1)求证: 为等差数列;
(2)已知 分别求数列 的通项公式;
(3)求数 。
(1)证明:由 的两根得:
是等差数列
(2)由(1)知
∴ 又 也符合该式,
(3) ①
②
①—②得
.
点评:本题考查了等差、等比数列的性质,数列的构造,数列的转化思想,乘公比错项相减法求和等。
例2.设数列 满足 ,且数列 是等差数列,数列 是等比数列。
(I)求数列 和 的通项公式;
(II)是否存在 ,使 ,若存在,求出 ,若不存在,说明理由。
解:由题意得:
= ;
由已知 得公比
(2)
,所以当 时, 是增函数。
又 , 所以当 时 ,
又 , 所以不存在 ,使 。
【反馈演练】
1.制造某种产品,计划经过两年要使成本降低 ,则平均每年应降低成本 。
2.等比数列 的前 项和为 , ,则 54 。
3.设 为等差数列, 为数列 的前 项和,已知 , 为数列{ }的前 项和,则 .
4.已知数列
(1)求数列 的通项公式; (2)求证数列 是等比数列;
(3)求使得 的集合.
解:(1)设数列 ,由题意得:
解得:
(2)由题意知: ,
为首项为2,公比为4的等比数列
(3)由
5.已知数列 的各项均为正数, 为其前 项和,对于任意 ,满足关系 .
证明: 是等比数列;
证明:∵ ① ∴ ②
②-①,得
∵
故:数列{an}是等比数列
【总结】最新一年年www.kmf8.com为小编在此为您收集了此文章“高三数学复习教案:高考数学数列复习教案”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在www.kmf8.com学习愉快!
- 高三数学复习教案:高考数学数列复习教案
- › 高三数学复习:应处理好两大关系
- › 高三数学复习:集合与函数公式定理记忆口诀
- › 高三数学寒假作业填空题
- › 高三数学寒假作业解答题
- › 高三数学学习备考辅导:数学数列知识点
- › 高三数学备考复习基础知识归纳:集合
- › 高三数学备考:对课本内容必须做到了如指掌
- › 高三数学科目高考之前应注意的细节
- › 高三数学备考建议:高考数学答题要避免丢三落四
- › 高三数学指导:抓住做题的主要脉络
- › 高考复习策略:高三数学复习如何稳步提高
- › 2014届高三数学期中试题及答案
- 在百度中搜索相关文章:高三数学复习教案:高考数学数列复习教案
- 在谷歌中搜索相关文章:高三数学复习教案:高考数学数列复习教案
- 在soso中搜索相关文章:高三数学复习教案:高考数学数列复习教案
- 在搜狗中搜索相关文章:高三数学复习教案:高考数学数列复习教案