(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
(注:市场售价和种植成本的单位:元/102kg,时间单位:天)
解:(Ⅰ)由图一可得市场售价与时间的函数关系为
由图二可得种植成本与时间的函数关系为
g(t)= (t-150)2+100,0≤t≤300.
(Ⅱ)设t时刻的纯收益为h(t),则由题意得
h(t)=f(t)-g(t),
即
当0≤t≤200时,配方整理得
h(t)=- (t-50)2+100,
所以,当t=50时,h(t)取得区间[0,200]上的最大值100;
当200
所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5.
综上:由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大
【反馈演练】
1.把长为12cm的细铁丝截成两段,各自围成一个正三角形,则这两个正三角形面积之和的最小值是___________ .
2.某地高山上温度从山脚起每升高100m降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则此山的高度为_____17_____m.
3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15 x 2和L2=2 x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为____45.6___万元.
4.某单位用木料制作如图所示的框架,框架的下部是边长分别为x,y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2. 问x、y分别为多少时用料最省?
解:由题意得 xy+ x2=8,∴y= = (0
则框架用料长度为l=2x+2y+2( )=( + )x+ ≥4 .
当( + )x= ,即x=8-4 时等号成立.
此时,x=8-4 , ,
故当x为8-4 m,y为 m时,用料最省.
【总结】最新一年年www.kmf8.com为小编在此为您收集了此文章“高三数学复习教案:高考数学函数复习教案”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在www.kmf8.com学习愉快!
- 高三数学复习教案:高考数学函数复习教案
- › 高三数学复习:应处理好两大关系
- › 高三数学复习:集合与函数公式定理记忆口诀
- › 高三数学寒假作业填空题
- › 高三数学寒假作业解答题
- › 高三数学学习备考辅导:数学数列知识点
- › 高三数学备考复习基础知识归纳:集合
- › 高三数学备考:对课本内容必须做到了如指掌
- › 高三数学科目高考之前应注意的细节
- › 高三数学备考建议:高考数学答题要避免丢三落四
- › 高三数学指导:抓住做题的主要脉络
- › 高考复习策略:高三数学复习如何稳步提高
- › 2014届高三数学期中试题及答案
- 在百度中搜索相关文章:高三数学复习教案:高考数学函数复习教案
- 在谷歌中搜索相关文章:高三数学复习教案:高考数学函数复习教案
- 在soso中搜索相关文章:高三数学复习教案:高考数学函数复习教案
- 在搜狗中搜索相关文章:高三数学复习教案:高考数学函数复习教案