教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是角度计算中的进位制问题、互余与互补的概念;难点是互余与互补概念的理解和应用.熟练掌握角的度量的相关知识可以为进一步研究相交线、平行线打下基础.
1.度、分、秒的互换:如果一个角比1°还小,那么怎样度量它的大小?为了更精密地度量角.我们把1°的角60等份,每一份叫做1分的角,1分记作1';又把1'的角60等份,每一份叫做1秒的角,1秒记作1''.即1°=60',1'=60''.这表明角的度、分、秒是60进制的,这和计量时间的时、分、秒是一样的.例如:∠α的度数是32度48分51秒.记作∠α=32°48'51''.除法过程中,要注意度、分、秒是六十进制的,要把度的余数乘以60化为分,继续除得精确到分,把分的余数乘以60化为秒,继续除得精确到秒的近似值.
2.若两个角的和是一个直角,这两个角叫做互为余角,若两个角的和是一个平角,这两个角叫做互为补角.理解这两个概念,要把握以下几点:(1)必须具备两个角;(2)两个角的和是一个定值:互余两角的和是 ,互补两角的和是 ;(3)与两个角的位置无关,只考虑两角间的数量关系.
3.结合小学已经学过的概念,说明小于平角的角可以按照大小分成三类.分类的思想对于科学研究比较重要.要按照某种特征进行分类,例如按照大小、按照轻重,等等.分类要不重不漏.就是说,在把一群事物分类时,要使其中的每一事物都归入某一类,不能无类可归(不漏),并且只归入某一类,不能既归入这一类,又归入另一类或另几类(不重).这里只是初步渗透分类的思想,以后还要遇到分类,如三角形的分类.
三、教法建议
1.本节的教学内容中,对分类的数学思想加强了要求,由于分类的思想不是第一次出现,因此,可以简单进行小结,使得学生能够加深认识.使学生自己能对一些事物进行分类.
2.在角的内容中,对角的进位制要加以重视,因为这是与十进制不同的进制,以后由于不同的需要还会遇到不同的进制,在这里讲清楚后,以后再遇到,就会感到自然了.同时对于60这个数的特点进行分析,使学生对角的一些运算能很灵活.
3.角的单位中的大、小单位的互化比课本的要求要高,应该尽可能的掌握.
4.本节在对学生活动的安排上,时间可多一些,教师也可以根据情况酌情安排.在安排学生自己出题时,应多加鼓励,尽量用学生自己出的题.目的是调动学生学习的积极性.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解互为余角、互为补角的定义.
2.掌握有关补角和余角的性质.
3.应用以上知识点解决有关计算和简单推理问题.
(二)能力训练点
1.通过例3的讲解,培养学生用代数方法解几何问题的思路.
2.通过有关余角、补角性质的推导,初步培养学生逻辑思维和推理能力.
www.kmf8.com
(三)德育渗透点
通过互余、互补角性质的推导,说明事物之间具有普遍的联系性.
(四)美育渗透点
通过互余、互补的演示,使学全体会几何图形的动态美,通过性质的推导,使学生初步领略几何逻辑推理的严密美.
二、学法引导
1.教师教法:引导发现、尝试指导相结合.
2.学生学法:学生积极参与,动手动脑,与主动发现相结合;
三、重点·难点·疑点及解决办法
(一)重点
互为余角、互为补角的角的概念及有关余角、补角的性质.
(二)难点
有关余角和有关补角性质的推导.
(三)疑点
互余、互补的两个角图形的位置关系.
(四)解决办法
对重点、难点,应巧妙引导学生去发现,通过动手、动脑解决问题.
对疑点,由学生思考并讨论,互相叙述“为什么”并相互纠正,同时,由教师进行逻辑点拨.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、三角板、自制胶片.
六、师生互动活动设计
1.通过教师演示,学生活动的方法创设情境,引出课题.
2.通过学生讨论,归纳总结出互余、互补的定义,并通过两个练习对定义加以巩固.
3.通过教师出示问题,学生思考并相互叙述,最后教师加以点拨的方法完成第一个性质的逻辑推理,其他性质由教师出示问题,学生模仿完成,最后学生做反馈练习.
4.通过教师提问、学生回答完成图表的方法进行本节课的小结.
七、教学步骤
(一)明确目标
正确理解互余、互补的定义并掌握其性质,并能运用进行简单的计算和推理.
(二)整体感知
通过教师演示和指导,学生动手动脑参与,顺利地使学生理解和掌握互余、互补的定义和性质,并通过对图形的识别和性质的理解,完成一些简单的计算和推理.
(三)教学过程
创设情境,引入课题
师:上节课,我们学习了度量,认识了平角和直角,请同学们在练习本上画出一个平角和一个直角,并标明其度数.
学生画图形的同时,投影显示以下图形,见图1及图2:
图1 图2
教师演示:在以上两个图形的基础上,利用电脑(或投影),分别过两个角的顶点作活动射线 ,任意改变射线位置,让学生观察,如下图1及图2:
图1 图2
学生活动:过自己所画两个角的顶点,任意作射线 ,同时观察老师演示.
提出问题:射线 把平角 ,直角 分别分成了几个角?它们的度数关系如何?
(学生容易答出:分成两个角, , .)
教师演示:把射线 固定一个位置不动,然后把两个图形中的角保持大小不变,拉开,如图1及图2(或拉开更远些,多变换几种位置).
- 角的度量
- › 《角的度量》教学案例与反思
- › 角的度量教案(三)
- › 角的度量教案(一)
- › 4.3.1 角的度量(1)教案
- › 4.3.1角的度量(2)教案
- › 角的度量教案(二)
- › 角的度量与表示教案 人教版数学
- › 角的度量
- › 角的度量 教案
- › 4.3.1角的度量教案
- › 三年级数学《角的度量》教学方案
- 在百度中搜索相关文章:角的度量
- 在谷歌中搜索相关文章:角的度量
- 在soso中搜索相关文章:角的度量
- 在搜狗中搜索相关文章:角的度量