当前位置:考满分吧中小学教学初中学习网初二学习辅导初二数学辅导资料初二数学辅导初二数学:一元二次方程实数根错例剖析» 正文

初二数学:一元二次方程实数根错例剖析

[10-20 00:50:22]   来源:http://www.kmf8.com  初二数学辅导   阅读:8727
概要: 初二数学一元二次方程实数根错例剖析例1 下列方程中两实数根之和为2的方程是()(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0错答: B正解: C错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0错解 :B正解:D错因剖析:漏掉了方程有实数根的前提是△≥0例3(2000广西中考题) 已知关于x的一元二次方程(1-2k)x2-2x-1=0有两个不相等的实根,求k的取值范围。错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k&
初二数学:一元二次方程实数根错例剖析,标签:初二数学复习,http://www.kmf8.com

初二数学一元二次方程实数根错例剖析

例1   下列方程中两实数根之和为2的方程是()

(A)   x2+2x+3=0     (B) x2-2x+3=0    (c)  x2-2x-3=0      (D)  x2+2x+3=0

错答: B

正解: C

错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

例2   若关于x的方程x2+2(k+2)x+k2=0  两个实数根之和大于-4,则k的取值范围是(     )

(A)   k>-1     (B)  k<0    (c) -1< k<0    (D) -1≤k<0

错解 :B

正解:D

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(2000广西中考题) 已知关于x的一元二次方程(1-2k)x2-2x-1=0有两个不相等的实根,求k的取值范围。

错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得  k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2

错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。

正解: -1≤k<2且k≠

例4 (2002山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

错解:由根与系数的关系得

x1+x2= -(2m+1),    x1x2=m2+1,

∵x12+x22=(x1+x2)2-2 x1x2

=[-(2m+1)]2-2(m2+1)

=2 m2+4 m-1

又∵ x12+x22=15

∴ 2 m2+4 m-1=15

∴ m1 = -4   m2 = 2

错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1=  -19<0,方程无实数根,不符合题意。

正解:m = 2

www.kmf8.com

例5  已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

错解:∵方程有整数根,

∴△=9-4a>0,则a<2.25

又∵a是非负数,∴a=1或a=2

令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2

∴方程的整数根是x1= -1, x2= -2

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

正解:方程的整数根是x1= -1, x2= -2 ,  x3=0, x4= -3


Tag:初二数学辅导初二数学复习初中学习网 - 初二学习辅导 - 初二数学辅导资料 - 初二数学辅导
上一篇:初二数学勤学是基础 好问是关键