(1)求证:BD是⊙O的切线;
(2)若点E为线段OD的中点,证明:以O、A、C、E为顶点的四边形是菱形;
(3)作CF⊥AB于点F,连接AD交CF于点G(如图2),求 的值.
【考点】圆的综合题,圆周角定理,直角三角形两锐角的关系,切线的判定,直角三角形斜边上的中线性质,等边三角形的判定和性质,平行的判定和性质,菱形的判定,相似三角形的判定和性质。
【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角为直角得到∠BCA=90°,则∠ABC+∠BAC=90°,
而∠CBD=∠BA,得到∠ABC+∠CBD=90°,即OB⊥BD,根据切线的判定定理即可得到BD为⊙O的切
线。
(2)连接CE、OC,BE,根据直角三角形斜边上的中线等于斜边的一半得到BE=OE=ED,则△OBE为等边三角形,于是∠BOE=60°,又因为AC∥OD,则∠OAC=60°,AC=OA=OE,即有AC∥OE且AC=OE,可得到四边形OACE是平行四边形,加上OA=OE,即可得到四边形OACE是菱形。
(3)由CF⊥AB得到∠AFC=∠OBD=90°,而OD∥AC,则∠CAF=∠DOB,根据相似三角形的
判定易得Rt△AFC∽Rt△OBD,则有 ,即 ,再由FG∥BD易证得△AFG∽△ABD,则 ,即 ,然后求FG与FC的比即可。
11. (2012湖北孝感10分))如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、
BN于点D、C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)若AD=4,BC=9,求⊙O的半径R.
【答案】解:(1)证明:过O点作OE⊥CD于点E,
∵AM切⊙O于点A,∴OA⊥AD。
又∵DO平分∠ADC,∴OE=OA。
∵OA为⊙O的半径,∴OE为⊙O的半径。
∴CD是⊙O的切线。
(2)过点D作DF⊥BC于点F,
∵AM,BN分别切⊙O于点A,B,
∴AB⊥AD,AB⊥BC。
∴四边形ABFD是矩形。∴AD=BF,AB=DF。
又∵AD=4,BC=9,∴FC=9-4=5。
∵AM,BN,DC分别切⊙O于点A,B,E,
∴DA=DE,CB=CE。∴DC=AD+BC=4+9=13。
在Rt△DFC中,DC2=DF2+FC2,∴ 。
∴AB=12。∴⊙O的半径R是6。
【考点】切线的判定和性质,角平分线的性质,勾股定理,矩形的判定和性质。
【分析】(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论。
(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,从而可得出半径。
12. (2012湖北襄阳10分)如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长.
【答案】解:(1)连接OB,
∵PB是⊙O的切线,∴∠PBO=90°。
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB。
又∵PO=PO,∴△PAO≌△PBO(SAS)。
∴∠PAO=∠PBO=90°。∴直线PA为⊙O的切线。
(2)EF2=4OD•OP。证明如下:
∵∠PAO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°。
∴∠OAD=∠OPA。∴△OAD∽△OPA,∴ ,即OA2=OD•OP。
又∵EF=2OA,∴EF2=4OD•OP。
(3)∵OA=OC,AD=BD,BC=6,∴OD= BC=3(三角形中位线定理)。
设AD=x,
∵tan∠F= ,∴FD=2x,OA=OF=2x﹣3。
在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32,
解得,x1=4,x2=0(不合题意,舍去)。∴AD=4,OA=2x﹣3=5。
∵AC是⊙O直径,∴∠ABC=90°。
又∵AC=2OA=10,BC=6,∴cos∠ACB= 。
∵OA2=OD•OP,∴3(PE+5)=25。∴PE= 。
【考点】切线的判定和性质,垂径定理,全等三角形的判定和性质,直角三角形两锐角的关系,相似三角
形的判定和性质,三角形中位线定理,勾股定理,圆周角定理,锐角三角函数定义,特殊角的三角函数值。1028458【分析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠POB,从而证明△PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论。
(2)先证明△OAD∽△OPA,由相似三角形的性质得出OA与OD、OP的关系,然后将EF=2OA代入关系式即可。
(3)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,由勾股定理解出x的值,从而能求出cos∠ACB,再由(2)可得OA2=OD•OP,代入数据即可得出PE的长。
13. (2012湖北鄂州10分)如图,梯形ABCD是等腰梯形,且AD∥BC,O是腰CD的中点,以CD长
为直径作圆,交BC于E,过E作EH⊥AB于H。
(1)求证:OE∥AB;
(2)若EH= CD,求证:AB是⊙O的切线;
(3)若BE=4BH,求 的值。
【答案】解:(1)证明:在等腰梯形ABCD中,AB=DC,∴∠B=∠C。
∵OE=OC,∴∠OEC=∠C,∴∠B=∠OEC。∴OE∥AB。
(2)证明:过点O作OF⊥AB于点F,过点O作OG∥BC交AB于点G。
∵AB=DC,∴∠B=∠C。
∴OC=OE,∴∠OEC=∠C。∴∠OEC=∠B。∴OE∥GB。
又∵EH⊥AB,∴FO∥HE。∴四边形OEHF是平行四边形。∴OF=EH。
又∵EH= CD,∴OF= CD,即OF是⊙O的半径。
∴AB是⊙O的切线。
(3)连接DE。
∵CD是直径,∴∠DEC=90°。∴∠DEC=∠EHB。
又∵∠B=∠C,∴△EHB∽△DEC。∴ 。
∵BE=4BH,设BH=k,则BE=4k,
,
∴CD=2EH=2 。∴ 。
【考点】等腰梯形(三角形)的性质,平行线的判定和性质,平行四边形的判定和性质,切线的判定,相似三角形的判定和性质,勾股定理。
上一页 [1] [2] [3] [4] [5] [6] 下一页
- 2017湖北圆中考数学题解析
- › 2017高考政治备考攻略
- › 2017高三政治复习备考的主要策略
- › 2017年高考政治备考:重视“两件大事”坚持“三个为主”
- › 2017高考政治备考:着重了解七大考点
- › 2017年高考政治主观题得分技巧
- › 2017高考地理备考指导:解题技巧
- › 2017年高考备考:高考地理复习提纲
- › 2017年高考地理二轮复习:把握各要素之间的联系
- › 2017年高考最有可能考的50道地理试题
- › 2017年高考地理命题趋势预测及指导
- › 2017年高考地理答题技巧
- › 2017年高考地理复习:河流专题
- 在百度中搜索相关文章:2017湖北圆中考数学题解析
- 在谷歌中搜索相关文章:2017湖北圆中考数学题解析
- 在soso中搜索相关文章:2017湖北圆中考数学题解析
- 在搜狗中搜索相关文章:2017湖北圆中考数学题解析