最小值为 …………………………12分
【点评】此题为探究题型,前半部分难度较小,在确定x的取值范围时,学生不容易想到;第(3)中x的取值范围也不容易想到,是本题的难点。探究就是上边知识点的一个应用,相对来说简单一些。整体来说,此题难度偏难,有一定挑战性。
24. (2012•湖北省恩施市,题号24 分值12)如图12,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交与点N。其顶点为D。
(1求抛物线及直线A、C的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线对称轴与直线AC相交于点B,E为直线AC上任意一点,过E作EF∥BD,交抛物线于点F,以B、D、E、F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若点P是该抛物线上位于直线AC上方的一动点,求△APC面积的最大值
【解析】(1)直接将A、C两点的坐标代入y=-x2+bx+c和y=kx+b即可。
(2)本题实质是在直线x=3上找一点M使MN+MD的值最小。作N关于x=3的对称点,连接D N1,求直线D N1和x=3的交点可得m的值;
(3)BD、EF是平行四边形的邻边,分点E在线段AC和线段AC(或CA)延长线上两种可能来考虑。BD长可求,EF=BD,点F和点E横坐标相同,点F纵坐标等于点E纵坐标加(或减)BD长度,设点E(x,y),则点F坐标(x,y+3),代入抛物线表达式可求解;
(4)作CQ⊥x轴于Q,作PG⊥x轴,交AC于H,则点H和点P横坐标相同,设二者横坐标为x,根据直线与抛物线表达式可用分别表示出相应纵坐标,进而用x表示PH的长度,根据△PAC面积等于 PH×AQ(AQ为定值)可讨论其最值。
【答案】解:设直线AC的解析式为:y=kx+n,点 A(-1,0),C(2,3)在A\C上,可得:
解得:k=1,n=1
∴AC的解析式为:y=x+1;
把A(-1,0),C(2,3)y=-x2+bx+c
解得b=2,c=3,
∴抛物线的解析式为y= -x2+2x+3,
∴N(0,3)D(1,4).
(2) 作N关于x=3的对称点N1,连接DN1,则N1(6,3).设直线D N1的解析式为y=px+q,则有:
,∴p= ,q= ,∴D N1的解析式y= x+ ,当M(3,m)在D N1上时,MN+MD的值最小,∴m= ×3+ = ;
(3)易知B(1,2),又D(1,4)∴BD=2.因为点E在AC上,设点E(x,x+1),
1°当点E在线段AC上时,点F(x.x+3),代入y= -x2+2x+3,得x+3=-x2+2x+3,
解得x=0或=1(不符合题意舍去),∴E;
2°当点E在线段AC(或CA)延长线上时,点F(x.x-1),代入y= -x2+2x+3,得x-1=-x2+2x+3,解得x= ,所以E( , )E( , )
综上所述,当点E(0, 1)、( , )或( , )时以B、D、E、F为顶点的四边形能否为平行四边形;
(4)作CQ⊥x轴于Q,作PG⊥x轴,交AC于H。
设H(x,x+1),则P(x, -x2+2x+3),所以PH=(-x2+2x+3)-(x+1)= -x2+ x+2,
又∵S△PAB=S△PAH+ S△PBH= PH×AQ= (-x2+ x+2)×3= (x- )2+ ,
∴△APC面积的最大值是 。
的交点可得m的值;
【点评】本题是存在性探索性问题,在解决这一类存在性探索问题时主要应注意:首先假定这个数学对象已经存在,根据数形结合的思想,将其构造出来;然后再根据已知条件与有关性质一步步地进行探索,如果探索出与条件相符的结果,就肯定存在,否则不存在,探索过程就是理由.本题主要考查了用待定系数法求解析式、勾股定理、解方程组等,用到的数学数学有函数思想、方程思想、数形结合思想、对称思想、分类讨论思想等,题目综合性强、难度大,但是考查的知识面较广,是一个区分度很大题目。
28.(2012湖南衡阳市,28,10)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)
(1)求此抛物线的解析式.
(2)过点P作CB所在直线的垂线,垂足为点R,
①求证:PF=PR;
②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.
解析:(1)根据题意能判断出点O是矩形ABCD的对角线交点,因此D、B关于原点对称,A、B关于x轴对称,得到A、D的坐标后,利用待定系数法可确定抛物线的解析式.
(2)①首先根据抛物线的解析式,用一个未知数表示出点P的坐标,然后表示出PF、RF的长,两者进行比较即可得证;
②首先表示RF的长,若△PFR为等边三角形,则满足PF=PR=FR,列式求解即可;
③根据①的思路,不难看出QF=QS,若连接SF、RF,那么△QSF、△PRF都是等腰三角形,先用∠SQF、∠RPF表示出∠DFS、∠RFP的和,用180°减去这个和值即可判断出△RSF的形状.
答案:解:(1)∵抛物线的顶点为坐标原点,
∴A、D关于抛物线的对称轴对称;
∵E是AB的中点,
∴O是矩形ABCD对角线的交点,又B(2,1)
∴A(2,﹣1)、D(﹣2,﹣1);
由于抛物线的顶点为(0,0),可设其解析式为:y=ax2,则有:
4a=﹣1,a=﹣
∴抛物线的解析式为:y=﹣ x2.
(2)①证明:由抛物线的解析式知:P(a,﹣ a2),而R(a,1)、F(0,﹣1),则:
则:PF= = = a2+1,PR= = a2+1.
∴PF=PR.
②由①得:RF= ;
若△PFR为等边三角形,则RF=PF=FR,得:
= a2+1,即: a4﹣ a2﹣3=0,得:
a2=﹣4(舍去),a2=12;
∴a=±2 ,﹣ a2=﹣3;
∴存在符合条件的P点,坐标为(2 ,﹣3)、(﹣2 ,3).
③同①可证得:QF=QS;
在等腰△SQF中,∠1= (180°﹣∠SQF);
同理,在等腰RPF中,∠2= (180°﹣∠RPF);
∵QS⊥BC、PR⊥BC,
∴QS∥PR,∠SQP+∠RPF=180°
∴∠1+∠2= (360°﹣∠SQF﹣∠RPF)=90°
∴∠SFR=180°﹣∠1﹣∠2=90°,即△SFR是直角三角形.
上一页 [1] [2] [3] [4] [5] [6] [7] [8] 下一页
- 2017年全国各地中考数学开放探索型问题试题整理汇集
- › 2017高考政治备考攻略
- › 2017高三政治复习备考的主要策略
- › 2017年高考政治备考:重视“两件大事”坚持“三个为主”
- › 2017高考政治备考:着重了解七大考点
- › 2017年高考政治主观题得分技巧
- › 2017高考地理备考指导:解题技巧
- › 2017年高考备考:高考地理复习提纲
- › 2017年高考地理二轮复习:把握各要素之间的联系
- › 2017年高考最有可能考的50道地理试题
- › 2017年高考地理命题趋势预测及指导
- › 2017年高考地理答题技巧
- › 2017年高考地理复习:河流专题
- 在百度中搜索相关文章:2017年全国各地中考数学开放探索型问题试题整理汇集
- 在谷歌中搜索相关文章:2017年全国各地中考数学开放探索型问题试题整理汇集
- 在soso中搜索相关文章:2017年全国各地中考数学开放探索型问题试题整理汇集
- 在搜狗中搜索相关文章:2017年全国各地中考数学开放探索型问题试题整理汇集