当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学暑假作业九年级下数学暑假作业二次函数(含答案)» 正文

九年级下数学暑假作业二次函数(含答案)

[02-25 21:17:18]   来源:http://www.kmf8.com  初三数学暑假作业   阅读:8141
概要: 【答案】D【点评】本题构造二次函数图象,运用图像法得出 , 的取值范围是解题的关键,体现了方程与函数的关系,本题技巧性非常强.难度较大.3. (2011甘肃兰州,9,4分)如图所示的二次函数 的图象中,刘星同学观察得出了下面四条信息:(1) >0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有A. 2个 B. 3个 C. 4个 D. 1个【解题思路】由图象可知,抛物线与x轴有两个交点,根据二次函数的图象和性质,判断出(1) >0正确;当x=0时,由图像可知,y=c<1,故(2)c>1不正确;由图像可知对称轴x= >-1,又根据抛物线开口向下,知a<0,所以2a-b<0,故(3)正确;由图象可知,二次函数 ,当x=1时,y=a+b+c,对应的点在x轴的下方,所以y=a+b+c<0,故(4)正确.综合前面的分析得出其中错误的只有1个.故选D,其余选项错误.【答案】D.【点评】本题主要考查了二次函数的图象和性质、对称轴及特殊点的函数值等知识
九年级下数学暑假作业二次函数(含答案),标签:初三数学暑假作业答案,http://www.kmf8.com

【答案】D

【点评】本题构造二次函数图象,运用图像法得出 , 的取值范围是解题的关键,体现了方程与函数的关系,本题技巧性非常强.难度较大.

3. (2011甘肃兰州,9,4分)如图所示的二次函数 的图象中,刘星同学观察得出了下面四条信息:(1) >0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有

A.  2个         B. 3个      C.  4个      D. 1个

【解题思路】由图象可知,抛物线与x轴有两个交点,根据二次函数的图象和性质,判断出(1) >0正确;当x=0时,由图像可知,y=c<1,故(2)c>1不正确;由图像可知对称轴x= >-1,又根据抛物线开口向下,知a<0,所以2a-b<0,故(3)正确;由图象可知,二次函数 ,当x=1时,y=a+b+c,对应的点在x轴的下方,所以y=a+b+c<0,故(4)正确.综合前面的分析得出其中错误的只有1个.故选D,其余选项错误.

【答案】D.

【点评】本题主要考查了二次函数的图象和性质、对称轴及特殊点的函数值等知识点,本题的易错点主要是审题,如其中错误的有,很容易误认为正确的有. (3)2a-b<0;(4)a+b+c<0判断有点难度,解决的关键是利用对称轴和特殊点的函数值来判断.难度中等.

4. (2011甘肃兰州,14,4分)如图,正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是

【解题思路】由已知可得图中四个直角三角形全等,面积相等,AE= ,AH= ,s=1- = ,因为a=2>0,抛物线开口向上,对称轴x= ,在y轴的右侧,故B选项正确,其余显然错误.

【答案】B.

【点评】考查的知识点和方法有正方形性质、三角形面积计算、二次函数图象和性质.根据开口方向和对称轴判定符合条件的函数图象是解决本题的关键.难度中等.

13. (2011湖北襄阳,12,3分)已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k 的取值范围是(    )

A.k<4   B.k≤4   C.k<4且k≠3   D.k≤4且k≠3

【解题思路】当k-3=0,即k=3时,函数是一次函数,它的图象与x轴有一个交点(- ,0);当k-3≠0即k≠3时,函数是二次函数,其图象是抛物线,它与x轴有交点就是有两个或一个交点的意思,所以有4-4(k-3)≥0,解得k≤4.综上可知,当k≤4时,函数y=(k-3)x2+2x+1的图象与x轴有交点.

【答案】B.

【点评】本题综合考查了一次函数,二次函数,一元二次方程知识,并从中渗透分类讨论的数学思想,是一个易错题.日常学习中,学生训练的较多的是抛物线与x轴有交点类的问题,实际解答中容易 直接联想一元二次方程根的判别式得4-4(k-3)≥0,解得k≤4,同时认为k≠3,从而忽略了对系数k-3=0后得到的一次函数情形的分析,错选为D.当然,也会有部分同学根本没有意识到讨论中需要k≠3,同时也没想到一次函数情形,而误打误撞选对答案B.难度中等.

5. (2011贵州安顺,9,3分)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x. 则y关于x的函数图象大致是(      )

A.           B.           C.          D.

【解题思路】选项A中x取负不合题意,x=0时正方形EFGH就是正方形ABCD所以y=1因此B是错误的,∵AE=x,∴DH=x,AH=1-x,y=EH2= AE2 + AH2= x2 + (1-x)2=2x2-2x+1。图像是抛物线,所以D是错误的,应选C。

【答案】C

【点评】本题主要考查几何图形的变化与函数图像之间的联系,做此题的关键是根据题意求出函数解析式。难度较小。

6. (2011江苏镇江,8,2分)已知二次函数y=-x2+x- ,当自变量x取m时对应的函数值大于0,当自变量x分别取m-1、m+1时对应的函数值为y1、y2,则y1、y2必须满足(    )

A.y1>0,y2>0    B.y1<0,y2<0    C.y1<0,y2>0    D.y1>0,y2<0

【解题思路】设抛物线与横轴交于点A(x1,0),B(x2,0),其中0

【答案】B

【点评】此题考查二次函数的图象和性质.解此题的关键是确定自变量m-1、m+1在横轴上的位置,难度中等.

1.(2011湖南株洲,8,3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线 (单位:米)的一部分,则水喷出的最大高度是

A. 米      B. 米 C. 米 D. 米

【解题思路】由于 =-(x-2)2+4,所以抛物线的顶点坐标是(2,4),由此,水喷出的最大高度是4米.

【答案】A

【点评】本题也可以通过抛物线的顶点坐标公式求得,另外,在运用配方时,应注意避免符号等错误.难度中等.

12.(2011四川绵阳12,3)若x1,x2(x1

A.x1

C.x1

【解题思路】作出二次函数y=(x-a)(x-b)与直线y=1的图象,两图象的交点的横坐标就是方程(x-a)(x-b)=1的两个根,即x1,x2,而a,b是二次函数y=(x-a)(x-b)与x轴的两个交点的横坐标,由图象知,x1

【答案】B

【点评】本题主要考查二次函数和一元二次方程,某个方程的解,可以看作是两个函数的交点的横坐标,画出图象即可得解.

8.(2011年内蒙古呼和浩特,8,3)已知一元二次方程 的一根为 ,在二次函数 的图象上有三点 、 、 ,y1、y2、y3的大小关系是(     )

A.     B.     C.       D.

【解题思路】把根 代入一元二次方程可求出 的值,从而得出二次函数的对称轴为直线 ,当   时, 随 的增大而增大.而 关于对称轴 的对称点为 ,从而比较出y1、y2、y3的大小.

上一页  [1] [2] [3]  下一页


Tag:初三数学暑假作业初三数学暑假作业答案初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学暑假作业
上一篇:2014年初三数学暑假作业检测试题