当前位置:考满分吧中小学教学高中学习网高一学习辅导高一数学辅导资料高一数学教案高一数学教案:集合与简易逻辑» 正文

高一数学教案:集合与简易逻辑

[10-20 00:27:49]   来源:http://www.kmf8.com  高一数学教案   阅读:8715
概要: 【摘要】欢迎来到www.kmf8.com高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高一数学教案:集合与简易逻辑”希望能为您的提供到帮助。本文题目:高一数学教案:集合与简易逻辑教材:逻辑联结词(1)目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。过程:一、提出课题:简单逻辑、逻辑联结词二、命题的概念:例:12>5 ① 3是12的约数 ② 0.5是整数 ③定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。如:①②是真命题,③是假命题反例:3是12的约数吗? x>5 都不是命题不涉及真假(问题) 无法判断真假上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。三、复合命题:1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除(2)菱形的对角线互相 菱形的对角线互相垂直且菱形的垂直且平分⑤
高一数学教案:集合与简易逻辑,标签:高一数学教案模板,http://www.kmf8.com

【摘要】欢迎来到www.kmf8.com高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高一数学教案:集合与简易逻辑”希望能为您的提供到帮助。

本文题目:高一数学教案:集合与简易逻辑

教材:逻辑联结词(1)

目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

过程:

一、提出课题:简单逻辑、逻辑联结词

二、命题的概念:例:12>5 ① 3是12的约数 ② 0.5是整数 ③

定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。

如:①②是真命题,③是假命题

反例:3是12的约数吗? x>5 都不是命题

不涉及真假(问题) 无法判断真假

上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。

三、复合命题:

1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

(2)菱形的对角线互相 菱形的对角线互相垂直且菱形的

垂直且平分⑤ 对角线互相平分

(3)0.5非整数⑥ 非“0.5是整数”

观察:形成概念:简单命题在加上“或”“且”“非”这些逻辑联结词成复合命题。

3.其实,有些概念前面已遇到过

如:或:不等式 x2x6>0的解集 { x | x<2或x>3 }

且:不等式 x2x6<0的解集 { x | 2< x<3 } 即 { x | x>2且x<3 }

四、复合命题的构成形式

如果用 p, q, r, s……表示命题,则复合命题的形式接触过的有以下三种:

即: p或q (如 ④) 记作 pq

p且q (如 ⑤) 记作 pq

非p (命题的否定) (如 ⑥) 记作 p

小结:1.命题 2.复合命题 3.复合命题的构成形式

【总结】最新一年www.kmf8.com为小编在此为您收集了此文章“高一数学教案:集合与简易逻辑”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在www.kmf8.com学习愉快!


Tag:高一数学教案高一数学教案模板高中学习网 - 高一学习辅导 - 高一数学辅导资料 - 高一数学教案
上一篇:高一数学教案:三角函数