当前位置:考满分吧中小学教学高中学习网高二学习辅导高二数学辅导高二数学专项练习高二数学专项练习:基本不等式训练题» 正文

高二数学专项练习:基本不等式训练题

[02-28 15:44:41]   来源:http://www.kmf8.com  高二数学专项练习   阅读:8939
概要: 为了帮助学生们更好地学习高中数学,www.kmf8.com精心为大家搜集整理了“高二数学专项练习:基本不等式训练题”,希望对大家的数学学习有所帮助!高二数学专项练习:基本不等式训练题1.若xy>0,则对 xy+yx说法正确的是()A.有最大值-2 B.有最小值2C.无最大值和最小值 D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()A.400 B.100C.40 D.20答案:A3.已知x≥2,则当x=____时,x+4x有最小值____.答案:244.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0 时,求f(x)的最大值.解:(1)∵x>0,∴12x,4x>0.∴12x+4x≥212x?4x=83.当且仅当12x=4x,即x=3时取最小值83,∴当x>0时,f(x)的最小值为83.(2)∵x<0,∴-x>0.则-f(x)=12-x+(-4x)≥212-x??-4x?=83,当且仅当12-x=-4x
高二数学专项练习:基本不等式训练题,标签:高二数学专项练习,http://www.kmf8.com

为了帮助学生们更好地学习高中数学,www.kmf8.com精心为大家搜集整理了“高二数学专项练习:基本不等式训练题”,希望对大家的数学学习有所帮助!

高二数学专项练习:基本不等式训练题

1.若xy>0,则对 xy+yx说法正确的是()

A.有最大值-2 B.有最小值2

C.无最大值和最小值 D.无法确定

答案:B

2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()

A.400 B.100

C.40 D.20

答案:A

3.已知x≥2,则当x=____时,x+4x有最小值____.

答案:24

4.已知f(x)=12x+4x.

(1)当x>0时,求f(x)的最小值;

(2)当x<0 时,求f(x)的最大值.

解:(1)∵x>0,∴12x,4x>0.

∴12x+4x≥212x?4x=83.

当且仅当12x=4x,即x=3时取最小值83,

∴当x>0时,f(x)的最小值为83.

(2)∵x<0,∴-x>0.

则-f(x)=12-x+(-4x)≥212-x??-4x?=83,

当且仅当12-x=-4x时,即x=-3时取等号.

∴当x<0时,f(x)的最大值为-83.

一、选择题

1.下列各式,能用基本不等式直接求得最值的是()

A.x+12x B.x2-1+1x2-1

C.2x+2-x D.x(1-x)

答案:C

2.函数y=3x2+6x2+1的最小值是()

A.32-3 B.-3

C.62 D.62-3

解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)≥3(22-1)=62-3.

3.已知m、n∈R,mn=100,则m2+n2的最小值是()

A.200 B.100

C.50 D.20

解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.

4.给出下面四个推导过程:

①∵a,b∈(0,+∞),∴ba+ab≥2ba?ab=2;

②∵x,y∈(0,+∞),∴lgx+lgy≥2lgx?lgy;

③∵a∈R,a≠0,∴4a+a ≥24a?a=4;

④∵x,y∈R,,xy<0,∴xy+yx=-[(-xy)+(-yx)]≤-2?-xy??-yx?=-2.

其中正确的推导过程为()

A.①② B.②③

C.③④ D.①④

解析:选D.从基本不等式成立的条件考虑.

①∵a,b∈(0,+∞),∴ba,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;

②虽然x,y∈(0,+∞),但当x∈(0,1)时,lgx是负数,y∈(0,1)时,lgy是负数,∴②的推导过程是错误的;

③∵a∈R,不符合基本不等式的条件,

∴4a+a≥24a?a=4是错误的;

④由xy<0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.

5.已知a>0,b>0,则1a+1b+2ab的最小值是()

A.2 B.22

C.4 D.5

解析:选C.∵1a+1b+2ab≥2ab+2ab≥22×2=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.

6.已知x、y均为正数,xy=8x+2y,则xy有()

A.最大值64 B.最大值164

C.最小值64 D.最小值164

解析:选C.∵x、y均为正数,

∴xy=8x+2y≥28x?2y=8xy,

当且仅当8x=2y时等号成立.

∴xy≥64.

二、填空题

7.函数y=x+1x+1(x≥0)的最小值为________.

答案:1

8.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.

解析:1=x+4y≥2x?4y=4xy,∴xy≤116.

答案:大116

9.(2010年高考山东卷)已知x,y∈R+,且满足x3+y4=1,则xy的最大值为________.

解析:∵x>0,y>0且1=x3+y4≥2xy12,∴xy≤3.

当且仅当x3=y4时取等号.

答案:3

三、解答题

10.(1)设x>-1,求函数y=x+4x+1+6的最小值;

(2)求函数y=x2+8x-1(x>1)的最值.

解:(1)∵x>-1,∴x+1>0.

∴y=x+4x+1+6=x+1+4x+1+5

≥2 ?x+1??4x+1+5=9,

当且仅当x+1=4x+1,即x=1时,取等号.

∴x=1时,函数的最小值是9.

(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1

=(x-1)+9x-1+2.∵x>1,∴x-1>0.

∴(x-1)+9x-1+2≥2?x-1??9x-1+2=8.

当且仅当x-1=9x-1,即x=4时等号成立,

∴y有最小值8.

11.已知a,b,c∈(0,+∞),且a+b+c=1,求证:(1a-1)?(1b-1)?(1c-1)≥8.

证明:∵a,b,c∈(0,+∞),a+b+c=1,

∴1a-1=1-aa=b+ca=ba+ca≥2bca,

同理1b-1≥2acb,1c-1≥2abc,

以上三个不等式两边分别相乘得

(1a-1)(1b-1)(1c-1)≥8.

当且仅当a=b=c时取等号.

12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).

问:污水处理池的长设计为多少米时可使总价最低.

解:设污水处理池的长为x米,则宽为200x米.

总造价f(x)=400×(2x+2×200x)+100×200x+60×200

=800×(x+225x)+12000

≥1600x?225x+12000

=36000(元)

当且仅当x=225x(x>0),

即x=15时等号成立.

经过精心的整理,有关“高二数学专项练习:基本不等式训练题”的内容已经呈现给大家,祝大家学习愉快!

相关推荐:

www.kmf8.com
Tag:高二数学专项练习高二数学专项练习高中学习网 - 高二学习辅导 - 高二数学辅导 - 高二数学专项练习
上一篇:高二数学专项练习:等差数列的前n项和训练题