当前位置:考满分吧中小学教学初中学习网初一学习辅导初一数学辅导资料初一数学试卷与“二元一次方程组”有关的典型应用题例析» 正文

与“二元一次方程组”有关的典型应用题例析

[10-20 00:29:14]   来源:http://www.kmf8.com  初一数学试卷   阅读:8233
概要: X=276y=22解方程组得:所以火车长276米,速度为22米/秒.九.“绳子测量”问题例9.用绳子测量水井的深度.如果将绳子折成三等分,每份绳长比井深多5尺;如果将绳子折成四等份,每份绳子比井深多1尺.问绳长和井深各是多少尺?分析与解答:解决此类问题时要明确:不管怎样测,绳长和井深是不变的.可设绳长为x尺,井深y尺,则方程组为:X=48y=111/3 x-y=51/4 x-y=1解方程组得:所以绳长48尺,井深11尺.十.“浓度配比”问题例10.要用浓度分别为30%和70%的两种农药制剂,配制成浓度为60%的农药20千克,则需两种农药各多少千克?分析与解答:“浓度配比”问题是一种比较抽象的数学问题,问题当中涉及的量摸不着,也看不见,所以理解起来比较困难. 初中阶段我们遇到的一般都是固体或者液体溶质的水溶液,水是溶剂. “浓度配比问题”是把浓度大小不同的两种溶液配成浓度居中的新溶液,配制的方法是直接把两种溶液放在一起,通过搅拌、振荡等手段使两种溶液均匀的混合在一起. 所以
与“二元一次方程组”有关的典型应用题例析,标签:初一数学试卷分析,http://www.kmf8.com

X=276

y=22

解方程组得:

所以火车长276米,速度为22米/秒.

九.“绳子测量”问题

例9.用绳子测量水井的深度.如果将绳子折成三等分,每份绳长比井深多5尺;如果将绳子折成四等份,每份绳子比井深多1尺.问绳长和井深各是多少尺?

分析与解答:解决此类问题时要明确:不管怎样测,绳长和井深是不变的.可设绳长为x尺,井深y尺,则方程组为:

X=48

y=11

1/3 x-y=5

1/4 x-y=1

解方程组得:

所以绳长48尺,井深11尺.

十.“浓度配比”问题

例10.要用浓度分别为30%和70%的两种农药制剂,配制成浓度为60%的农药20千克,则需两种农药各多少千克?

分析与解答:“浓度配比”问题是一种比较抽象的数学问题,问题当中涉及的量摸不着,也看不见,所以理解起来比较困难. 初中阶段我们遇到的一般都是固体或者液体溶质的水溶液,水是溶剂. “浓度配比问题”是把浓度大小不同的两种溶液配成浓度居中的新溶液,配制的方法是直接把两种溶液放在一起,通过搅拌、振荡等手段使两种溶液均匀的混合在一起. 所以在配制的前后过程中,溶液中溶剂、溶质和溶液的总量都保持不变,只是溶液的浓度发生了变化.解决问题时可从这些不变量入手去建立相等关系和列方程.由此可设两种农药各有x、y千克,根据题意列方程组:

X=5

y=15

X+y=20

30%x+70%y=20×60%

解方程组得:

所以30%的农药需5千克,70%的农药需15千克.

上一页  [1] [2] 


Tag:初一数学试卷初一数学试卷分析初中学习网 - 初一学习辅导 - 初一数学辅导资料 - 初一数学试卷
上一篇:二元一次方程组应用题归类复习