当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷中考数学三角形试题归类(含答案)» 正文

中考数学三角形试题归类(含答案)

[10-20 00:48:49]   来源:http://www.kmf8.com  初三数学试卷   阅读:8802
概要: 5.(山西省7分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为 (即AB:BC= ),且B、C、E三点在同一条盲线上。请根据以上杀件求出树DE的高度(测倾器的高度忽略不计).【答案】解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形。∴AF=BE,EF=AB=2。设DE=x,在Rt△CDE中,CE= ,在Rt△ABC中,∵ AB:BC= ,AB=2,∴BC= 。在Rt△AFD中,DF=DE-EF=x-2,∴AF= 。∵AF=BE=BC+CE,∴ ,解得x=6。答:树DE的高度为6米。【考点】解直角三角形的应用(仰角俯角、坡度坡角问题),锐角三角函数,特殊角的三角函数值。。【分析】通过构造直角三角形分别表示出BC和AF,得到有关的方程求解即可。6.(山西省9分)如图(1),Rt△ABC中,
中考数学三角形试题归类(含答案),标签:初三数学试卷分析,http://www.kmf8.com

5.(山西省7分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为 (即AB:BC= ),且B、C、E三点在同一条盲线上。请根据以上杀件求出树DE的高度(测倾器的高度忽略不计).

【答案】解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形。∴AF=BE,EF=AB=2。

设DE=x,

在Rt△CDE中,CE= ,

在Rt△ABC中,∵ AB:BC= ,AB=2,∴BC= 。

在Rt△AFD中,DF=DE-EF=x-2,∴AF= 。

∵AF=BE=BC+CE,∴ ,解得x=6。

答:树DE的高度为6米。

【考点】解直角三角形的应用(仰角俯角、坡度坡角问题),锐角三角函数,特殊角的三角函数值。。

【分析】通过构造直角三角形分别表示出BC和AF,得到有关的方程求解即可。

6.(山西省9分)如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F

(1)求证:CE=CF.

(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.

【答案】解:(1)∵∠ACB=90°,∴∠CFA=90°-∠CAF。

∵CD⊥AB,∴∠CEF=∠AED=90°-∠EAD。

又∵AF平分∠CAB,∴∠CAF=∠EAD。∴∠CFA=∠CEF。∴CE=CF。

(2)BE′与CF相等。证明如下:

如图,过点E作EG⊥AC于G。

又∵AF平分∠CAB,ED⊥AB,∴ED=EG。

由平移的性质可知:D’E’=DE,∴D’E’ =GE。

∵∠ACB=90°,∴∠ACD+∠DCB=90°。

∵CD⊥AB于D,∴∠B+∠DCB=90°。∴∠ACD=∠B。

在Rt△CEG与Rt△BE’D’中,

∵∠GCE=∠B,∠CGE=∠BD’E’,CE=D’E’,∴△CEG≌△BE’D’(AAS)。∴CE=BE’。

由(1)CE=CF,得CF=BE’。

【考点】三角形两锐角的关系,对顶角的性质,等腰三角形的判定,角平分线定义,平移的性质,矩形的性质,全等三角形的判定和性质。

【分析】(1)要证CE=CF,根据等腰三角形等角对等边的判定,只要∠CFA=∠CEF即可。由已知,知∠CFA与∠CAF互余,∠CEF=∠AED与∠EAD互余,而AF平分∠CAB。从而∠CAF=∠EAD。得证。

(2)由角的等量关系转换和平移的性质,根据AAS证得△CEG≌△BE’D’,即可根据全等三角形的对应边相等的性质得到CE=BE’。由(1)的结论即可得到CF=BE’。

7.(内蒙古呼和浩特6分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.现测得AC=30m,BC=70m,∠CAB=120°,请计算A,B两个凉亭之间的距离.

【答案】解:如图,作CD⊥AB于点D.

在Rt△CDA中,∵AC=30,

∠CAD=180°-∠CAB=180°-120°=60°,

∴CD=AC•sin∠CAD=30•sin60°=15 ,

AD=AC•cos∠CAD=30•cos60°=15。

在Rt△CDB中,∵BC=70,BD2=BC2﹣CD2,

∴BD= 。

∴AB=BD﹣AD=65﹣15=50。

答:A,B两个凉亭之间的距离为50m。

【考点】解直角三角形的应用(方向角问题),锐角三角函数,特殊角的三角函数值,勾股定理。

【分析】构造直角三角形,过C点作CD⊥AB于点D,先在Rt△CDA中应用锐角三角函数求得AD、CD的长,再利用勾股定理求得BD的长,从而由AB=BD﹣AD即得A,B两个凉亭之间的距离。

8.(内蒙古巴彦淖尔、赤峰10分)如图,一架满载救援物资的飞机到达灾区的上空,在A处测到空投地点C的俯角α=60°,测到地面指挥台β的俯角=30°,已知BC的距离是2000米,求此时飞机的高度(结果保留根号).

【答案】解:作AD⊥BC,交BC的延长线于点D,

∵EA∥BC,∴∠ABC=β=30°。

又∵∠BAC=α-β=30°,∴∠ABC=∠BAC。

∴AC=BC=2000。

∴在Rt△ACD中,

AD= AC•cos∠CAD=AC•cos300=1000 。

答:此时飞机的高度为1000 米。

【考点】解直角三角形的应用(仰角俯角问题),平行的性质,等腰三角形的判定,锐角三角函数,特殊角的三角函数值。

【分析】作AD⊥BC,交BC的延长线于点D, 由平行线内错角相等的性质和等腰三角形的判定,易得AC=BC=2000,从而在Rt△ACD中应用锐角三角函数即可求得此时飞机的高度。

9.(内蒙古包头8分)一条船上午8点在A处望见西南方向有一座灯塔B,此时测得船和灯塔相距362海里,船以每小时20海里的速度向南偏西24°的方向航行到C处,此时望见灯塔在船的正北方向.(参考数据sin24°≈0.4,cos24°≈0.9)

(1)求几点钟船到达C处;

(2)当船到达C处时,求船和灯塔的距离.

【答案】解:(1)延长CB与AD交于点E.∴∠AEB=90°,

∵∠BAE=45°,AB=362,∴BE=AE=36。

根据题意得:∠C=24°,sin24°= ,

∴AC= 。

∴90÷20=4.5。

∴8+4.5=12.5。

∴12点30分船到达C处。

(2)在直角三角形ACE中,cos24°= ,即cos24°= ,

∴BC=45。

∴船到C处时,船和灯塔的距离是45海里。

【考点】解直角三角形的应用(方向角问题),等腰直角三角形的判定和性质,锐角三角函数。

【分析】(1)要求几点到达C处,需要先求出AC的距离,根据时间=距离除以速度,从而求出解.

(2)船和灯塔的距离就是BC的长,作出CB的延长线交AD于E,根据直角三角形的角,用三角函数可求出CE的长,减去BE就是BC的长.

上一页  [1] [2] [3] [4]  下一页


Tag:初三数学试卷初三数学试卷分析初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
上一篇:初三数学上册期末考试试卷(带答案)