点评:欲不重不漏地分类,需要选定一个适当的分类标准,一般地,根据所给问题的具体情况,或是从某一位置的特定要求入手分类,或是从某一元素的特定要求入手分类,或是从问题中某一事物符合条件的情形入手分类,或是从问题中有关事物的相对关系入手分类等等。
例4、将字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A.6种 B.9种 C.11种 D.23种
解法一(采用“分步”方法):完成这件事分三个步骤。
第一步:任取一个数字,按规定填入方格,有3种不同填法;
第二步:取与填入数字的格子编号相同的数字,按规定填入方格,仍有3种不同填法;
第三步:将剩下的两个数字按规定填入两个格子,只有1种填法;
于是,由分步计数原理得,共有N=3×3×1=9种不同填法。
解法二:(采用“列举”方法):从编号为1的方格内的填数入手进行分类。
第一类:编号为1的方格内填数字2,共有3种不同填法: 2413 2143 2341
第二类:编号1的方格内填数字3,也有3种不同填法: 3142 3412 3421
第三类:编号为1的方格内填数字4,仍有3种不同填法: 4123 4312 4321
于是由分类计数原理得共有N=3+3+3=9种不同填法,应选B
解法三(间接法):将上述4个数字填入4个方格,每格填一个数,共有N1=4×3×2×1=24种不同填法,其中不合条件的是 (1)4个数字与4个格子的编号均相同的填法有1种; (2)恰有两个数字与格子编号相同的填法有6种;
(3)恰有1个数字与格子编号相同的填法有8种; 因此,有数字与格子编号相同的填法共有N2=1+6+8=15种
于是可知,符合条件的填法为24-15=9种。
点评:解题步骤的设计原则上任意,但不同的设计招致计算的繁简程度不同,一般地,人们总是优先考虑特殊元素的安置或特殊位置的安排,以减少问题的头绪或悬念。
当正面考虑头绪较多时,可考虑运用间接法计算:不考虑限制条件的方法种数—不符合条件的方法种数=符合条件的方法种数。
在这里,直接法中的“分析”与间接法主体的“分类”,恰恰向人们展示了“分步”与“分类”相互依存、相互联系的辩证关系。
例5、用数字0,1,2,3,4,5组成无重复数字4位数,其中,必含数字2和3,并且2和3不相邻的四位数有多少个?
解:注意到这里“0”的特殊性,故分两类来讨论。
第一类:不含“0”的符合条件的四位数,首先从1,4,5这三个数字中任选两个作排列有 种;进而将2和3分别插入前面排好的两个数字中间或首尾位置,又有 种排法,于是由分步计数原理可知,不含0且符合条件的四位数共有 =36个。
第二类:含有“0”的符合条件的四位数,注意到正面考虑头绪较多,故考虑运用“间接法”:首先从1,4,5这三个数字中任选一个,而后与0,2,3进行全排列,这样的排列共有 个。
其中,有如下三种情况不合题意,应当排险:
(1)0在首位的,有 个; (2)0在百位或十位,但2与3相邻的,有 个
(3)0在个位的,但2与3相邻的,有 个
因此,含有0的符合条件的四位数共有 =30个
于是可知,符合条件的四位数共有36+30=66个
点评:解决元素不相邻的排列问题,一般采用“插空法”,即先将符合已知条件的部分元素排好,再将有“不相邻”要求的元素插空放入;解决元素相邻的排列问题,一般采用“捆绑法”,即先将要求相邻的元素“捆绑”在一起,作为一个大元素与其它元素进行排列,进而再考虑大元素内部之间的排列问题。
例6、某人在打靶时射击8枪,命中4枪,若命中的4枪有且只有3枪是连续命中的,那么该人射击的8枪,按“命中”与“不命中”报告结果,不同的结果有( )
A.720种 B.480种 C.24种 D.20种
分析:首先,对未命中的4枪进行排列,它们形成5个空挡,注意到未命中的4枪“地位平等”,故只有一种排法,其次,将连中的3枪视为一个元素,与命中的另一枪从前面5个空格中选2个排进去,有 种排法,于是由乘法原理知,不同的报告结果菜有 种
点评:这里的情形与前面不同,按照问题的实际情况理解,未命中的4枪“地位平等”,连续命中的3枪亦“地位平等”。因此,第一步排法只有一种,第二步的排法种数也不再乘以 。解决此类“相同元素”的排列问题,切忌照搬计算相同元素的排列种数的方法,请读者引起注意。
例7、
(1) ;
(2)若 ,则n= ;
(3) ;
(4)若 ,则n的取值集合为 ;
(5)方程 的解集为 ;
解:
(1)注意到n满足的条件 ∴原式= = (2)运用杨辉恒等式,已知等式
所求n=4。
(3)根据杨辉恒等式 原式= = = = (4)注意到这里n满足的条件n≥5且n∈N* ①
在①之下,
原不等式 ②
∴由①、②得原不等式的解集为{5,6,7,…,11}
(5)由 注意到当y=0时, 无意义,原方程组可化为
由此解得 经检验知 是原方程组的解。
例8、用红、黄、绿3种颜色的纸做了3套卡片,每套卡片有写上A、B、C、D、E字母的卡片各一张,若从这15张卡片中,每次取出5张,则字母不同,且3种颜色齐全的取法有多少种?
解:符合条件的取法可分为6类
第一类:取出的5张卡片中,1张红色,1张黄色,3张绿色,有 种取法;
第二类:取出的5张卡片中,1张红色,2张黄色,2张绿色,有 种取法;
第三类:取出的5张卡片中,1张红色,3张黄色,1张绿色,有 种取法;
第四类:取出的5张卡片中,2张红色,1张黄色,2张绿色,有 种取法;
- 高二数学教案第一单元:排列与组合
- › 标准方差高二数学公式
- › 高二数学无穷递降等比数列求和公式
- › 高二数学锐角三角函数公式
- › 高二数学公式(倍角公式)
- › 高二数学三倍角公式推导
- › 高二数学公式:降幂公式
- › 高二数学半角公式
- › 三角和高二数学公式
- › 两角和差高二数学公式
- › 高二数学公式(和差化积)
- › 高二数学诱导公式
- › 高二数学公式:锐角三角函数
- 在百度中搜索相关文章:高二数学教案第一单元:排列与组合
- 在谷歌中搜索相关文章:高二数学教案第一单元:排列与组合
- 在soso中搜索相关文章:高二数学教案第一单元:排列与组合
- 在搜狗中搜索相关文章:高二数学教案第一单元:排列与组合