www.kmf8.com为大家提供“高二数学学习:高二数学函数的性质”一文,供大家参考使用:
高二数学学习:高二数学函数的性质
三、函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
以上就是“高二数学学习:高二数学函数的性质”的所有内容,希望对大家有所帮助!
相关推荐:
www.kmf8.com- 高二数学学习:高二数学函数的性质
- › 高二数学寒假作业练习题
- › 高二数学寒假作业:填空题
- › 高二数学寒假作业选择题
- › 高二数学寒假作业填空题
- › 高二数学寒假作业大全
- › 2014高二数学暑假练习题
- › 高二数学暑假练习题:双曲线
- › 高二数学暑假作业练习
- › 高二数学暑假练习题精选
- › 高二数学理科暑假作业:椭圆
- › 高二数学公式:辅助角公式
- › 高二数学三倍角公式
- 在百度中搜索相关文章:高二数学学习:高二数学函数的性质
- 在谷歌中搜索相关文章:高二数学学习:高二数学函数的性质
- 在soso中搜索相关文章:高二数学学习:高二数学函数的性质
- 在搜狗中搜索相关文章:高二数学学习:高二数学函数的性质