你还在为高中数学学习而苦恼吗?别担心,看了“高二数学学习:高二数学选修1导数及其应用”以后你会有很大的收获:
高二数学学习:高二数学选修1导数及其应用
第三章:导数及其应用
知识点:
1、若某个问题中的函数关系用表示,问题中的变化率用式子
表示,则式子称为函数从到的平均变化率.
2、函数在处的瞬时变化率是,则称它为函数在处的导数,记作或,即
.
3、函数在点处的导数的几何意义是曲线在点处的切线的斜率.曲线在点处的切线的斜率是,切线的方程为.若函数在处的导数不存在,则说明斜率不存在,切线的方程为.
4、若当变化时,是的函数,则称它为的导函数(导数),记作或,即.
5、基本初等函数的导数公式:
若,则;若,则;
若,则;若,则;
若,则;若,则;
若,则;若,则.
6、导数运算法则:
;
;
.
7、对于两个函数和,若通过变量,可以表示成的函数,则称这个函数为函数和的复合函数,记作.
复合函数的导数与函数,的导数间的关系是
.
8、在某个区间内,若,则函数在这个区间内单调递增;若,则函数在这个区间内单调递减.
9、点称为函数的极小值点,称为函数的极小值;点称为函数的极大值点,称为函数的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.
10、求函数的极值的方法是:解方程.当时:
如果在附近的左侧,右侧,那么是极大值;
如果在附近的左侧,右侧,那么是极小值.
11、求函数在上的最大值与最小值的步骤是:
求函数在内的极值;
将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.
考点:1、导数在切线方程中的应用
2、导数在单调性中的应用
3、导数在极值、最值中的应用
4、导数在恒成立问题中的应用
典型例题
★1.(05全国卷Ⅰ)函数,已知在时取得极值,则=( )
A.2 B. 3 C. 4 D.5
★2.函数在[0,3]上的最大值与最小值分别是( )
A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16
★★★3.(根据04年天津卷文21改编)已知函数是R上的奇函数,当时取得极值-2.
(1)试求a、c、d的值;(2)求的单调区间和极大值;
★★★4.(根据山东2008年文21改编)设函数,已知为的极值点。
(1)求的值;
(2)讨论的单调性;
通过阅读“高二数学学习:高二数学选修1导数及其应用”这篇文章,小编相信大家对高中数学的学习又有了更进一步的了解,希望大家学习轻松愉快!
相关推荐:
www.kmf8.com- 高二数学学习:高二数学选修1导数及其应用
- › 高二数学寒假作业练习题
- › 高二数学寒假作业:填空题
- › 高二数学寒假作业选择题
- › 高二数学寒假作业填空题
- › 高二数学寒假作业大全
- › 2014高二数学暑假练习题
- › 高二数学暑假练习题:双曲线
- › 高二数学暑假作业练习
- › 高二数学暑假练习题精选
- › 高二数学理科暑假作业:椭圆
- › 高二数学公式:辅助角公式
- › 高二数学三倍角公式
- 在百度中搜索相关文章:高二数学学习:高二数学选修1导数及其应用
- 在谷歌中搜索相关文章:高二数学学习:高二数学选修1导数及其应用
- 在soso中搜索相关文章:高二数学学习:高二数学选修1导数及其应用
- 在搜狗中搜索相关文章:高二数学学习:高二数学选修1导数及其应用