当前位置:考满分吧中小学教学高中学习网高三学习辅导高三数学复习高三数学教案高三数学教案:圆锥曲线经典例题及总结» 正文

高三数学教案:圆锥曲线经典例题及总结

[10-20 00:47:15]   来源:http://www.kmf8.com  高三数学教案   阅读:8706
概要: 3. 以焦点弦PQ为直径的圆必与对应准线相交.4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)5. 若 在双曲线 (a>0,b>0)上,则过 的双曲线的切线方程是 .6. 若 在双曲线 (a>0,b>0)外 ,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是 .7. 双曲线 (a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意一点 ,则双曲线的焦点角形的面积为 .8. 双曲线 (a>0,b>o)的焦半径公式:( ,当 在右支上时, , .当 在左支上时, ,9. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.11. AB是双曲线 (a>0,b>0)的不平行于
高三数学教案:圆锥曲线经典例题及总结,标签:高三数学教案模板,http://www.kmf8.com

3. 以焦点弦PQ为直径的圆必与对应准线相交.

4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)

5. 若 在双曲线 (a>0,b>0)上,则过 的双曲线的切线方程是 .

6. 若 在双曲线 (a>0,b>0)外 ,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是 .

7. 双曲线 (a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意一点 ,则双曲线的焦点角形的面积为 .

8. 双曲线 (a>0,b>o)的焦半径公式:( ,

当 在右支上时, , .

当 在左支上时, ,

9. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.

10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.

11. AB是双曲线 (a>0,b>0)的不平行于对称轴的弦,M 为AB的中点,则 ,即 。

12. 若 在双曲线 (a>0,b>0)内,则被Po所平分的中点弦的方程是 .

13. 若 在双曲线 (a>0,b>0)内,则过Po的弦中点的轨迹方程是 .

椭圆与双曲线的对偶性质--(会推导的经典结论)

椭 圆

1. 椭圆 (a>b>o)的两个顶点为 , ,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是 .

2. 过椭圆 (a>0, b>0)上任一点 任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且 (常数).

3. 若P为椭圆 (a>b>0)上异于长轴端点的任一点,F1, F 2是焦点, , ,则 .

4. 设椭圆 (a>b>0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在△PF1F2中,记 , , ,则有 .

5. 若椭圆 (a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0

6. P为椭圆 (a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则 ,当且仅当 三点共线时,等号成立.

7. 椭圆 与直线 有公共点的充要条件是 .

8. 已知椭圆 (a>b>0),O为坐标原点,P、Q为椭圆上两动点,且 .(1) ;(2)|OP|2+|OQ|2的最大值为 ;(3) 的最小值是 .

9. 过椭圆 (a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则 .

10. 已知椭圆 ( a>b>0) ,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点 , 则 .

11. 设P点是椭圆 ( a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记 ,则(1) .(2) .

12. 设A、B是椭圆 ( a>b>0)的长轴两端点,P是椭圆上的一点, , , ,c、e分别是椭圆的半焦距离心率,则有(1) .(2) .(3) .

13. 已知椭圆 ( a>b>0)的右准线 与x轴相交于点 ,过椭圆右焦点 的直线与椭圆相交于A、B两点,点 在右准线 上,且 轴,则直线AC经过线段EF 的中点.

14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).

(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)

17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.

18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.

双曲线

1. 双曲线 (a>0,b>0)的两个顶点为 , ,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是 .

2. 过双曲线 (a>0,b>o)上任一点 任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且 (常数).

3. 若P为双曲线 (a>0,b>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点, , ,则 (或 ).

4. 设双曲线 (a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记 , , ,则有 .

5. 若双曲线 (a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1

6. P为双曲线 (a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线内一定点,则 ,当且仅当 三点共线且 和 在y轴同侧时,等号成立.

7. 双曲线 (a>0,b>0)与直线 有公共点的充要条件是 .

8. 已知双曲线 (b>a >0),O为坐标原点,P、Q为双曲线上两动点,且 .

(1) ;(2)|OP|2+|OQ|2的最小值为 ;(3) 的最小值是 .

9. 过双曲线 (a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则 .

10. 已知双曲线 (a>0,b>0),A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点 , 则 或 .

11. 设P点是双曲线 (a>0,b>0)上异于实轴端点的任一点,F1、F2为其焦点记 ,则(1) .(2) .

12. 设A、B是双曲线 (a>0,b>0)的长轴两端点,P是双曲线上的一点, , , ,c、e分别是双曲线的半焦距离心率,则有(1) .

(2) .(3) .

13. 已知双曲线 (a>0,b>0)的右准线 与x轴相交于点 ,过双曲线右焦点 的直线与双曲线相交于A、B两点,点 在右准线 上,且 轴,则直线AC经过线段EF 的中点.

14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).

(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).

17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.

18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.

其他常用公式:

1、连结圆锥曲线上两个点的线段称为圆锥曲线的弦,利用方程的根与系数关系来计算弦长,常用的弦长公式:

2、直线的一般式方程:任何直线均可写成 (A,B不同时为0)的形式。

上一页  [1] [2] [3] [4] [5] [6]  下一页


Tag:高三数学教案高三数学教案模板高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学教案
上一篇:高三数学教案:抛物线经典例题讲解