14.已知在四边形ABCD中, ,若添加一个条件
即可判定该四边 形是正方形,则这个条件可以是__________.
15.如图,在菱形 中,对角线 相交于点 ,若再补充一个条件能使菱形 成为正方形,则这个条件是 (只填一个条件即可).
16.如图,在等腰梯形 中, ∥ , = , ,∠ , ,则上底 的长是_______ .
17. 如图,矩形 的对角线 , ,则图中五个小矩形的周长之和
为_______ .
三、解答题(共69分)
18. (9分)如图, 是△ 的一条角平分线,DK∥AB交BC于点E,且DK=BC,连接BK,CK,得到四边形DCKB,请判断四边形DCKB是哪种特殊四边形,并说明理由.
19.(9分)如图,在四边形 中, ∥ , , ,求四边形 的周长.
20.(10分)如图,在平行四边形 中,对角线 相交于点 , 过点 分别交 于点 求证: .
21.(10分)如图,在平行四边形ABCD中, 、 是对角线 上的两点,且
求证:
22.(10分)如图,在△ 和△ 中,
与 交于点 .
(1)求证:△ ≌△ ;
(2)过点 作 ∥ ,过点 作 ∥ , 与 交于点 ,
试判断线段 与 的数量关系,并证明你的结论.
www.kmf8.com
23.(10分) 如图,在梯形 中, ,过对角线 的中点 作 ,分别交边 于点 ,连接 .
(1)求证:四边形 是菱形;
(2)若 , ,求四边形 的面积.
24.(11分)如图,点 是正方形 内一点,△ 是等边三角形,连接 ,延长 交边 于点 .
(1)求证:△ ≌△ ;
(2)求∠ 的度数.
第2章 特殊四边形检测题参考答案
1.B 解析:由平行四边形的判定定理知选项B正确.
2.B 解析:根据轴对称图形、中心对称图形的定义解题.
3.D 解析:只有(1)正确,(2)(3)(4)错误.
4.B 解析:A.等腰梯形是轴对称图形,但不是中心对称图形;C.矩形是轴对称图形,但对称轴有两条;D.菱形的对角线互相垂直,但不一定相等.
5.B 解析:选择方法2.过点A向 轴引垂线,过点B向 轴引垂线,两垂线相交于点D,连接CD,则△ABC的面积= ,直接计算即可.即
△ABC的面积 .故选B.
点拨:补形法是常用的方法,关键是得到若干个特殊的四边形和三角形的面积的和与差.易错点在于准确找到各三角形相应的底与高.
6.D 解析:在菱形 中,由∠ = ,得 ∠ .又∵ ,
∴ △ 是等边三角形,∴ .
7.A 解析:观察图形,在等腰梯形的一个上底角顶点处有三个上底角,因而等腰梯形上底角等于 ,所以 .
8.C 解析:根据矩形、菱形、正方形的性质解题.
9.A 解析:由题意知 4 , 5 ,∴ .
10.A 解析:由折叠的性质知 ,四边形 为正方形,
∴ .
11. A 解析:首先拼出各种类型的图形(如图),再根据特殊四边形的判定判断是不是正方形、菱形、等腰梯形、矩形即可.
选项A,不论如何放置都不能判断所得的四边形是正方形,故本选项符合选择条件.
选项B,如图(1),所得的四边形是矩形,故本选项不符合选择条件.
选项C,如图(2),所得的四边形是平行四边形,
因为 垂直平分 ,所以 .又∠ =60°,所以△ 是等边三角形,
所以 ,即平行四边形 是菱形,故本选项不符合选择条件.
选项D,如图(3),所得的四边形是等腰梯形,故本选项不符合选择条件.故选A.
点拨:本题主要考查了三角形的中位线定理、平行四边形的性质和判定、菱形的判定、正方形的判定、等腰梯形的判定等知识点,解此题的关键是正确拼出各种类型的图形.
12. C 解析:分别根据等腰三角形的性质、正方形的判定、矩形的判定、三角形内角和定理以及菱形的性质判断即可得出答案.
(1)等边三角形是特殊的等腰三角形,根据等腰三角形的性质得出此命题正确.
(2)邻边相等的矩形一定是正方形,根据正方形的判定得出此命题正确.
(3)对角线相等的四边形也可能是等腰梯形,故此命题错误.
(4)三角形中至少有两个角是锐角,根据三角形内角和定理得出 此命题正确.
(5)如图所示,∵菱形的对角线互相垂直,∴ .
∵ ,
∴ 菱形对角线长的平方和等于边长平方的4倍,故此命题正确.
因此正确的有4个,故选C.
13.对角线相等 菱 解析:如图,连接 ,
∵ 分别是 的中点,
∴ , ,
∴ ,∴ 四边形 是平行四边形.
∵ ,∴ ,
∴ 平行四边形 是菱形.
点拨:本题主要考查对三角形的中位线定理、平行四边形的判定、菱形的判定等知识点的理解和掌握,能求出四边形是平行四边形是解此题的关键.
14.
15. 或 或 (答案不唯一)
16.2 解析:∠ .
在等腰梯形 中,∠ ∠ ,
∵ ∠ ∠ ∠
又∵ ∥ ∴ ∠ ∠ ∠ .
∴ .
17.28 解析:由勾股定理得 ,又 , ,所以 所以五个小矩形的周长之和为
18. 分析:由角平分线的性质可得到 ,再根据平行线的性质可推出 ,利用SAS即可判定 ,由全等三角形的性质得 ,再分 或 确定四边形的形状.
解:∵ 平分 ,∴ .
∵ ,∴ .
∴ .∴ .
∵ ,∴ .∴ .
∵ ,∴ ,
∴ .∵ ,∴ △ ≌△ ,
∴ ∠KBD=∠CDB.
- 初三数学备考题典第1章特殊四边形章节试题
- › 初三数学:把握三个关键 学习事半功倍
- › 初三数学教学设计:锐角三角函数
- › 初三数学试题—数学寒假作业选择题
- › 初三数学试题—数学寒假作业填空题
- › 初三数学试题—数学寒假作业解答题
- › 初三数学试题—数学寒假作业计算题
- › 初三数学寒假作业:解直角三角形在实际问题中的运用
- › 2016年初三数学寒假作业之一元二次方程选择题
- › 2016年初三数学寒假作业之一元二次方程填空题
- › 初三数学寒假作业之一元二次方程计算题
- › 2016年初三数学寒假作业试题精编
- › 2016年初三数学寒假作业试题参考答案
- 在百度中搜索相关文章:初三数学备考题典第1章特殊四边形章节试题
- 在谷歌中搜索相关文章:初三数学备考题典第1章特殊四边形章节试题
- 在soso中搜索相关文章:初三数学备考题典第1章特殊四边形章节试题
- 在搜狗中搜索相关文章:初三数学备考题典第1章特殊四边形章节试题