(1)计算:(-1)2012-| -7 |+ 9 ×(5 -π)0+( 1 5 )-1;
(2))化简:
19. (本题满分9分)
如图,函数y=kx与y= 的图象在第一象限内交于点A,在求点A坐标时,小明由于看错了k,解得A(1,3);小华由于看错了m,解得A(1, ).
(1)求这两个函数的关系式及点A的坐标;
(2)根据(1)的结果及函数图象,若kx >0,请直接写出x的取值范围.
20. (本题满分9分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连结BD.
求证:(1)△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
21.(本题满分9分)
(1)问题背景
如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.
(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)
结论:线段BD与CE的数量关系是______________________(请直接写出结论);
(2)类比探索
在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;
(3)拓展延伸
在(2)中,如果AB≠AC,且AB=nAC(0
结论:BD=_____CE(用含n的代数式表示).
22.(本题满分9分)
为了抓住世界杯商机,某商店决定购进A、B两种世界杯纪念品.若购进A种纪念品10件,B种纪念品5件,需要1 000元;若购进A种纪念品5件,B种纪念品3件,需要550元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方 案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种 方案获利最大?最大利润是多少元?
23.(本题满分10分)
如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
24.(本题满分11分)如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
一、参考答案:
二、填空题:
13、.4
14.42
15.12
16.32
17.wkdrc
三、解答题:
18.(1)原式=1-7+3+5=2.
(2).解:
19.解:(1)把x=1,y=3代入 ,m=1×3=3,∴ .…………………………2分
把x=1,y= 代入 ,k= ;∴ .…………………4分
由 ,解得:x=±3,∵点A在第一象限,∴x=3. 当x=3时, ,
∴点A的坐标(3, 1).……7分 (2) -3
20、(1)AB=AC,易证∠BAD=∠C AE ,AD=AE,所以△BAD≌△CA E(SAS)。
(2)BD⊥CE,证明略。
22.(1)BD=2CE;……………2分 (2)结论BD=2CE仍然成立.……………3分
证明:延长CE、AB交于点G. ∵∠1=∠2,∠1=∠3,∠2=∠4,
∴∠3=∠4. 又∵∠CEB=∠GEB=90°,BE=BE.
∴△CBE≌△GBE. ∴CE=GE, ∴CG=2CE.…………5分
∵∠D+∠DCG=∠G+∠DCG=90°. ∴∠D=∠G , ∴sin∠D= sin∠G.
∴ . ∵AB=AC, ∴BD=CG=2CE.…………8分
(说明:也可以证明△DAB∽△GAC).(3)2n.……9分
22.(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元
¬则
∴解方程组得¬
∴购进一件A种纪念品需要50元,购进一件B种纪念品需要100元
(2)设该商店购进A种纪念品x个,购进B种纪念品y个
∴¬
解得20≤y≤25
∵y为正整数 ∴共有6种进货方案
(3)设总利润为W元
W =20x+30y=20(200-2 y)+30y =-10 y +4000 (20≤y≤25)
∵-10<0∴W随y的增大而减小
∴当y=20时,W有最大值 W最大=-10×20+4000=3800(元)
- 2017年初三数学暑假作业(附答案)
- › 2017高考政治备考攻略
- › 2017高三政治复习备考的主要策略
- › 2017年高考政治备考:重视“两件大事”坚持“三个为主”
- › 2017高考政治备考:着重了解七大考点
- › 2017年高考政治主观题得分技巧
- › 2017高考地理备考指导:解题技巧
- › 2017年高考备考:高考地理复习提纲
- › 2017年高考地理二轮复习:把握各要素之间的联系
- › 2017年高考最有可能考的50道地理试题
- › 2017年高考地理命题趋势预测及指导
- › 2017年高考地理答题技巧
- › 2017年高考地理复习:河流专题
- 在百度中搜索相关文章:2017年初三数学暑假作业(附答案)
- 在谷歌中搜索相关文章:2017年初三数学暑假作业(附答案)
- 在soso中搜索相关文章:2017年初三数学暑假作业(附答案)
- 在搜狗中搜索相关文章:2017年初三数学暑假作业(附答案)