以下是www.kmf8.com为您推荐的中考数学三角形的边与角真题归类(附答案),希望本篇文章对您学习有所帮助。
中考数学三角形的边与角真题归类(附答案)
一.选择题
1. (2012•荆门)已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )
A. 30° B. 35° C. 40° D. 45°
解析:∵∠3是△ADG的外角,
∴∠3=∠A+∠1=30°+25°=55°,
∵l1∥l2,
∴∠3=∠4=55°,
∵∠4+∠EFC=90°,
∴∠EFC=90°﹣55°=35°,
∴∠2=35°.
故选B.
2.(2012•中考)如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=【 B 】
A.360º B.250º
C.180º D.140º
3.(2012•连云港)如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )
A. 50° B. 60° C. 70° D. 80°
考点: 平行线的性质;三角形内角和定理。
分析: 先根据三角形内角和定理求出∠4的度数,由对顶角的性质可得出∠5的度数,再由平行线的性质得出结论即可.
解答: 解:∵△BCD中,∠1=50°,∠2=60°,
∴∠4=180°-∠1-∠2=180°-50°-60°=70°,
∴∠5=∠4=70°,
∵a∥b,
∴∠3=∠5=70°.
故选C.
点评: 本题考查的是平行线的性质,解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.
4.(2012深圳)如图所示,一个60o角的三角形纸片,剪去这个600角后,得到 一个四边形,则么 的度数为【 】
A. 120O B. 180O. C. 240O D. 3000
【答案】C。
【考点】三角形内角和定理,平角定义。
【分析】如图,根据三角形内角和定理,得∠3+∠4+600=1800,
又根据平角定义,∠1+∠3=1800,∠2+∠4=1800,
∴1800-∠1+1800-∠2+600=1800。
∴∠1+∠2=240O。故选C。
5.(2012•聊城)将一副三角板按如图所示摆放,图中∠α的度数是( )
A.75° B.90° C.105° D.120°
考点: 三角形的外角性质;三角形内角和定理。
专题: 探究型。
分析: 先根据直角三角形的性质得出∠BAE及∠E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.
解答: 解:∵图中是一副直角三角板,
∴∠BAE=45°,∠E=30°,
∴∠AFE=180°﹣∠BAE﹣∠E=105°,
∴∠α=105°.
故选C.
点评: 本题考查的是三角形内角和定理,即三角形内角和是180°.
6.(2012毕节)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是( )
A.40° B.60° C.80° D.120°
解析:根据平行线性质求出∠ABC,根据三角形的外角性质得出∠3=∠1-∠ABC,代入即可得出答案.
解答:解:∵a∥b,∴∠ABC=∠2=80°,∵∠1=120°,∠3=∠1-∠ABC,∴∠3=120°-80°=40°,故选A.
点评:本题考查了平行线性质和三角形的外角性质的应用,关键是求出∠ABC的度数和得出∠3=∠1-∠ABC,题目比较典型,难度不大.
7.(2012十堰)如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,
∠BAC=75°,则∠CEF的大小为( D )
A.60° B.75° C.90° D.105°
【考点】平行线的性质;三角形内角和定理.
【专题】探究型.
【分析】先根据三角形外角的性质求出∠1的度数,再由平行线的性质即可得出结论.
【解答】解:∵∠1是△ABC的外角,∠ABC=30°,∠BAC=75°,
∴∠1=∠ABC+∠BAC=30°+75°=105°,
∵直线BD∥EF,
∴∠CEF=∠1=105°.
故选D.
【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.
8.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=( )
A.150° B.210° C.105° D.75°
考点: 三角形内角和定理;翻折变换(折叠问题)。
分析: 先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.
解答: 解:∵△A′DE是△ABC翻折变换而成,
∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,
∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,
∴∠1+∠2=360°﹣2×105°=150°.
故选A.
点评: 本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
9.(2012•吉林).如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE‖AB,∠ADE=42°,则∠B的大小为
(A) 42° (B) 45° (C) 48° (D)58°
解析:C ∵DE‖AB,∠ADE=42°∴∠CAB=42°
∵∠C=90°∴∠B=90-42°= 48°。
考查知识:平行线的性质、三角形的内角和
[1] [2] [3] [4] [5] [6] [7] 下一页
- 中考数学三角形的边与角真题归类(附答案)
- › 2016中考数学一轮复习【几何篇】垂径定理
- › 中考数学解题能力提高:走好三步
- › 中考数学提高解题速度八步走
- › 中考数学考高分有秘诀—走好应考4小步
- › 中考数学高分秘诀:应考“四步走”
- › 2016中考数学复习攻略:三点帮你得高分
- › 高分解读:历年中考数学试题的4大特点
- › 2016中考数学高分秘诀:吃透题意 谨防失误
- › 2016中考数学应用题复习全攻略
- › 2016中考数学压轴题复习攻略
- › 2016中考数学高分秘诀:应考“四步走”
- › 解析历年中考数学试题的4大特点
- 在百度中搜索相关文章:中考数学三角形的边与角真题归类(附答案)
- 在谷歌中搜索相关文章:中考数学三角形的边与角真题归类(附答案)
- 在soso中搜索相关文章:中考数学三角形的边与角真题归类(附答案)
- 在搜狗中搜索相关文章:中考数学三角形的边与角真题归类(附答案)