当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷中考数学三角形的边与角真题归类(附答案)» 正文

中考数学三角形的边与角真题归类(附答案)

[10-20 00:48:49]   来源:http://www.kmf8.com  初三数学试卷   阅读:8942
概要: 以下是www.kmf8.com为您推荐的中考数学三角形的边与角真题归类(附答案),希望本篇文章对您学习有所帮助。 中考数学三角形的边与角真题归类(附答案)一.选择题1. (2012•荆门)已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A. 30° B. 35° C. 40° D. 45°解析:∵∠3是△ADG的外角,∴∠3=∠A+∠1=30°+25°=55°,∵l1∥l2,∴∠3=∠4=55°,∵∠4+∠EFC=90°,∴∠EFC=90°﹣55°=35°,∴∠2=35°.故选B.2.(2012•中考)如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=【 B 】A.360&ord
中考数学三角形的边与角真题归类(附答案),标签:初三数学试卷分析,http://www.kmf8.com

以下是www.kmf8.com为您推荐的中考数学三角形的边与角真题归类(附答案),希望本篇文章对您学习有所帮助。

 中考数学三角形的边与角真题归类(附答案)

一.选择题

1. (2012•荆门)已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于(  )

A. 30° B. 35° C. 40° D. 45°

解析:∵∠3是△ADG的外角,

∴∠3=∠A+∠1=30°+25°=55°,

∵l1∥l2,

∴∠3=∠4=55°,

∵∠4+∠EFC=90°,

∴∠EFC=90°﹣55°=35°,

∴∠2=35°.

故选B.

2.(2012•中考)如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=【 B 】

A.360º B.250º

C.180º D.140º

3.(2012•连云港)如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为(  )

A. 50° B. 60° C. 70° D. 80°

考点: 平行线的性质;三角形内角和定理。

分析: 先根据三角形内角和定理求出∠4的度数,由对顶角的性质可得出∠5的度数,再由平行线的性质得出结论即可.

解答: 解:∵△BCD中,∠1=50°,∠2=60°,

∴∠4=180°-∠1-∠2=180°-50°-60°=70°,

∴∠5=∠4=70°,

∵a∥b,

∴∠3=∠5=70°.

故选C.

点评: 本题考查的是平行线的性质,解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.

4.(2012深圳)如图所示,一个60o角的三角形纸片,剪去这个600角后,得到 一个四边形,则么 的度数为【 】

A. 120O B. 180O. C. 240O D. 3000

【答案】C。

【考点】三角形内角和定理,平角定义。

【分析】如图,根据三角形内角和定理,得∠3+∠4+600=1800,

又根据平角定义,∠1+∠3=1800,∠2+∠4=1800,

∴1800-∠1+1800-∠2+600=1800。

∴∠1+∠2=240O。故选C。

5.(2012•聊城)将一副三角板按如图所示摆放,图中∠α的度数是(  )

A.75°  B.90°  C.105°  D.120°

考点: 三角形的外角性质;三角形内角和定理。

专题: 探究型。

分析: 先根据直角三角形的性质得出∠BAE及∠E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.

解答: 解:∵图中是一副直角三角板,

∴∠BAE=45°,∠E=30°,

∴∠AFE=180°﹣∠BAE﹣∠E=105°,

∴∠α=105°.

故选C.

点评: 本题考查的是三角形内角和定理,即三角形内角和是180°.

6.(2012毕节)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是( )

A.40° B.60° C.80° D.120°

解析:根据平行线性质求出∠ABC,根据三角形的外角性质得出∠3=∠1-∠ABC,代入即可得出答案.

解答:解:∵a∥b,∴∠ABC=∠2=80°,∵∠1=120°,∠3=∠1-∠ABC,∴∠3=120°-80°=40°,故选A.

点评:本题考查了平行线性质和三角形的外角性质的应用,关键是求出∠ABC的度数和得出∠3=∠1-∠ABC,题目比较典型,难度不大.

7.(2012十堰)如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,

∠BAC=75°,则∠CEF的大小为( D )

A.60°    B.75°    C.90°    D.105°

【考点】平行线的性质;三角形内角和定理.

【专题】探究型.

【分析】先根据三角形外角的性质求出∠1的度数,再由平行线的性质即可得出结论.

【解答】解:∵∠1是△ABC的外角,∠ABC=30°,∠BAC=75°,

∴∠1=∠ABC+∠BAC=30°+75°=105°,

∵直线BD∥EF,

∴∠CEF=∠1=105°.

故选D.

【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.

8.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=(  )

A.150°  B.210°  C.105°  D.75°

考点: 三角形内角和定理;翻折变换(折叠问题)。

分析: 先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.

解答: 解:∵△A′DE是△ABC翻折变换而成,

∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,

∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,

∴∠1+∠2=360°﹣2×105°=150°.

故选A.

点评: 本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

9.(2012•吉林).如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE‖AB,∠ADE=42°,则∠B的大小为

(A) 42° (B) 45° (C) 48° (D)58°

解析:C ∵DE‖AB,∠ADE=42°∴∠CAB=42°

∵∠C=90°∴∠B=90-42°= 48°。

考查知识:平行线的性质、三角形的内角和

[1] [2] [3] [4] [5] [6] [7]  下一页


Tag:初三数学试卷初三数学试卷分析初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
上一篇:九年级数学上册期末检测试题(含答案)