∴MN=9,
故选D.
20.(2012中考)小明同学把一个含有450角的直角三角板在如图所示的两条平行线 上,测得 ,则 的度数是【 】
A.450 B.550 C.650 D.750
【答案】D。
21.(2012泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )
A.4 B.3 C.2 D.1
考点:三角形中位线定理;全等三角形的判定与性质。
解答:解:连接DE并延长交AB于H,
∵CD∥AB,
∴∠C=∠A,∠CDE=∠AHE,
∵E是AC中点,
∴DE=EH,
∴△DCE≌△HAE,
∴DE=HE,DC=AH,
∵F是BD中点,
∴EF是三角形DHB的中位线,
∴EF= BH,
∴BH=AB﹣AH=AB﹣DC=2,
∴EF=1.
故选D.
22.(2012•台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
A. 8 B. 10 C. D.
考点: 三角形的重心;等腰三角形的性质;勾股定理。
分析: 根据在△ABC中,根据三线合一定理与勾股定理即可求得AN的长,然后根据重心的性质求得AM的长,即可求解.
解答: 解:如图,延长AM,交BC于N点,
∵AB=AC,
∴△ABC为等腰三角形,
又∵M是△ABC的重心,
∴AN为中线,且AN⊥BC,
∴BN=CN= =8,
AN= =15,
AM=AN=×15=10,
故选,:B.
23.(2012•潜江)如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为( )
A. 2 B. 3 C. D. +1
考点: 平行线分线段成比例;等腰三角形的性质;等边三角形的性质。
分析: 延长BC至F点,使得CF=BD,证得△EBD≌△EFC后即可证得∠B=∠F,然后证得AC∥EF,利用平行线分线段成比例定理证得CF=EA后即可求得BD的长.
解答: 解:延长BC至F点,使得CF=BD,
∵ED=EC
∴∠EDB=∠ECF
∴△EBD≌△EFC
∴∠B=∠F
∵△ABC是等边三角形,
∴∠B=∠ACB
∴∠ACB=∠F
∴AC∥EF
∴AE=CF=2
∴BD=AE=CF=2
故选A.
点评: 本题考查了等腰三角形及等边三角形的性质,解题的关键是正确的作出辅助线.
二.填空题
24.(2012义乌市)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为 50° .
考点:平行线的性质;余角和补角。
解答:解:∵∠1=40°,
∴∠3=180°﹣∠1﹣45°=180°﹣40°﹣90°=50°,
∵a∥b,
∴∠2=∠3=50°.
故答案为:50°.
25.(2012•烟台)一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为 85 度.
考点: 三角形内角和定理。
分析: 先根据∠ADF=100°求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.
解答: 解:∵∠ADF=100°,∠EDF=30°,
∴∠MDB=180°﹣∠ADF﹣∠EDF=180°﹣100°﹣30°=50°,
∴∠BMD=180°﹣∠B﹣∠MDB=180°﹣45°﹣50°=85°.
故答案为:85.
点评: 本题考查的是三角形内角和定理,即三角形内角和是180°.
26.(2012湖州)如图,在△ABC中,D,E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=460,∠1=520,则∠2= 度。
【解析】由平行线的性质,可求得∠B=∠1=520,然后应用三角形的外角性质∠2=∠A+∠B,求得结论。
【答案】∵DE∥BC,∠1=520,∴∠B=520,又∠A=460,∴∠2=∠A+∠B=980.
【点评】本题主要考查了平行线的性质:两直线平行,同位角相等;以及三角形的外角性质:三角形的一外角等于和它不相邻的内角的和,是基础题。
27.(2012•长沙)如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD= 105 度.
解答: 解:∵∠A=45°,∠B=60°,
∴∠ACD=∠A+∠B=45°+60°=105°.
故答案为:105.
28.(2012•柳州)如图,在△ABC中,BD是∠ABC的角平分线,已知∠ABC=80°,则∠DBC= 40°.
【考点】三角形的角平分线、中线和高.
【分析】根据角平分线的性质得出∠ABD=∠DBC进而得出∠DBC的度数.
【解答】解:∵BD是∠ABC的角平分线,∠ABC=80°,
∴∠DBC=∠ABD= ∠ABC= ×80°=40°,
故答案为:40.
【点评】此题主要考查了角平分线的性质,根据角平分线性质得出∠ABD=∠DBC是解题关键.
29.(2012呼和浩特)如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=______°
【解析】∵∠B=47°,∴∠BAC+∠BCA=180°– 47°=133°,∴∠CAD+∠ACF=360°–133°=227°
又∵AE和CE是角平分线,∴∠CAE+∠ACE=113.5°,∴∠E=180°–113.5°=66.5°
【答案】66.5
【点评】本题考查了三角形的内角和以及角平分线的性质。
30.(2012•益阳)有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是 .
考点: 概率公式;三角形三边关系。
分析: 根据三角形的三边关系求出共有几种情况,根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
解答: 解:∵长度为2cm、3cm、4cm、7cm的四条线段,从中任取三条线段共有2、3、4;3、4、7;2、4、7;3、4、7四种情况,
上一页 [1] [2] [3] [4] [5] [6] [7] 下一页
- 中考数学三角形的边与角真题归类(附答案)
- › 2016中考数学一轮复习【几何篇】垂径定理
- › 中考数学解题能力提高:走好三步
- › 中考数学提高解题速度八步走
- › 中考数学考高分有秘诀—走好应考4小步
- › 中考数学高分秘诀:应考“四步走”
- › 2016中考数学复习攻略:三点帮你得高分
- › 高分解读:历年中考数学试题的4大特点
- › 2016中考数学高分秘诀:吃透题意 谨防失误
- › 2016中考数学应用题复习全攻略
- › 2016中考数学压轴题复习攻略
- › 2016中考数学高分秘诀:应考“四步走”
- › 解析历年中考数学试题的4大特点
- 在百度中搜索相关文章:中考数学三角形的边与角真题归类(附答案)
- 在谷歌中搜索相关文章:中考数学三角形的边与角真题归类(附答案)
- 在soso中搜索相关文章:中考数学三角形的边与角真题归类(附答案)
- 在搜狗中搜索相关文章:中考数学三角形的边与角真题归类(附答案)