10.(2012肇庆)如图1,已知D、E在△ABC的边上,DE∥BC,∠B = 60°,∠AED = 40°,则∠A 的度数为
A.100° B.90° C.80° D.70°
【解析】结合两直线平行,同位角相等及三角形内角和定理,把已知角和未知角联系起来,即可求出角的度数.
【答案】C
【点评】本题考查了三角形的内角和定理,及平行线的性质。
11.(2012云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为( )
A. 40° B. 45° C. 50° D. 55°
考点: 三角形内角和定理。
分析: 首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.
解答: 解:∵∠B=67°,∠C=33°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣67°﹣33°=80°
∵AD是△ABC的角平分线,
∴∠CAD=∠BAD=×80°=40°
故选A.
点评: 本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.
12.(2012广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )
A. 5 B. 6 C. 11 D. 16
考点:三角形三边关系。
解答:解:设此三角形第三边的长为x,则10﹣4
故选C.
13.(2012嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( )
A. 40° B. 60° C. 80° D. 90°
考点:三角形内角和定理。
解答:解:设∠A=x,则∠B=2x,∠C=x+20°,则x+2x+x+20°=180°,解得x=40°,即∠A=40°.
故选A.
14.(2012汕头)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )
A. 5 B. 6 C. 11 D. 16
分析: 设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
解答: 解:设此三角形第三边的长为x,则10﹣4
故选C.
点评: 本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.
15.(2012泸州)若下列各组值代表线段的长度,则不能构成三角形的是( )
A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8
解析:根据三角形两边之和大于第三边或两边边之差小于第三边进行判断.由于3+4<8,所以不能构成三角形;因为4+6>9,所以三线段能构成三角形;因为8+15>20,所以三线段能构成三角形;因为9+8>15,所以三线段能构成三角形.故选A.
答案:A
点评:判断三条线段能否构成三角形的边,可以从三条线段中选较小两边之和与剩下一边比较,和大于这边,就能够组成三角形的边.
16.(2012•广安)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为( )
A. 45° B. 75° C. 45°或75° D. 60°
考点: 等腰三角形的性质;含30度角的直角三角形;等腰直角三角形。
分析: 首先根据题意画出图形,注意分别从∠BAC是顶角与∠BAC是底角去分析,然后利用等腰三角形与直角三角形的性质,即可求得答案.
解答: 解:如图1:AB=AC,
∵AD⊥BC,
∴BD=CD=BC,∠ADB=90°,
∵AD=BC,
∴AD=BD,
∴∠B=45°,
即此时△ABC底角的度数为45°;
如图2,AC=BC,
∵AD⊥BC,
∴∠ADC=90°,
∵AD=BC,
∴AD=AC,
∴∠C=30°,
∴∠CAB=∠B= =75°,
即此时△ABC底角的度数为75°;
综上,△ABC底角的度数为45°或75°.
故选C.
点评: 此题考查了等腰三角形的性质、直角三角形的性质以及三角形内角和定理.此题难度适中,注意数形结合思想与分类讨论思想的应用是解此题的关键.
17.(2012•烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是( )
A.h2=2h1 B.h2=1.5h1 C.h2=h1 D.h2=h1
考点: 三角形中位线定理。
专题: 探究型。
分析: 直接根据三角形中位线定理进行解答即可.
解答: 解:如图所示:
∵O为AB的中点,OC⊥AD,BD⊥AD,
∴OC∥BD,
∴OC是△ABD的中位线,
∴h1=2OC,
同理,当将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则h2=2OC,
∴h1=h2.
故选C.
点评: 本题考查的是三角形中位线定理,即三角形的中位线平行于第三边,并且等于第三边的一半.
18.(2012海南)一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是【 】
A.3cm B.4cm C.7cm D.11cm
【答案】C。
【考点】三角形的构成条件。
【分析】根据三角形的两边之和大于第三边,两边之差小于第三边的构成条件,此三角形的第三边的长应在7-3=4cm和7+3=10cm之间。要此之间的选项只有7cm。故选C。
19.(2012铜仁)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
A.6 B.7 C.8 D.9
考点:等腰三角形的判定与性质;平行线的性质。
解答:解:∵∠ABC、∠ACB的平分线相交于点E,
∴∠MBE=∠EBC,∠ECN=∠ECB,
∵MN∥BC,
∴∠EBC=∠MEB,∠NEC=∠ECB,
∴∠MBE=∠MEB,∠NEC=∠ECN,
∴BM=ME,EN=CN,
∴MN=ME+EN,
即MN=BM+CN.
∵BM+CN=9
上一页 [1] [2] [3] [4] [5] [6] [7] 下一页
- 中考数学三角形的边与角真题归类(附答案)
- › 2016中考数学一轮复习【几何篇】垂径定理
- › 中考数学解题能力提高:走好三步
- › 中考数学提高解题速度八步走
- › 中考数学考高分有秘诀—走好应考4小步
- › 中考数学高分秘诀:应考“四步走”
- › 2016中考数学复习攻略:三点帮你得高分
- › 高分解读:历年中考数学试题的4大特点
- › 2016中考数学高分秘诀:吃透题意 谨防失误
- › 2016中考数学应用题复习全攻略
- › 2016中考数学压轴题复习攻略
- › 2016中考数学高分秘诀:应考“四步走”
- › 解析历年中考数学试题的4大特点
- 在百度中搜索相关文章:中考数学三角形的边与角真题归类(附答案)
- 在谷歌中搜索相关文章:中考数学三角形的边与角真题归类(附答案)
- 在soso中搜索相关文章:中考数学三角形的边与角真题归类(附答案)
- 在搜狗中搜索相关文章:中考数学三角形的边与角真题归类(附答案)