当前位置:考满分吧中小学教学高中学习网高三学习辅导高三数学复习高三数学教案高三数学教案:平面向量» 正文

高三数学教案:平面向量

[10-20 00:47:15]   来源:http://www.kmf8.com  高三数学教案   阅读:8458
概要: 解 证(3)以 A为起点作AB′→ =OB→ ,以 B′为起点作B′C′→ =OC→ ,以C′为起点作C′D′→ =OD→ ,以D′为起点作D′E′→ =OE→ .∵∠AOB=72º,∴∠OAB′=108º.同理∠AB′C′=∠B′C′D′=∠C′D′E′=108º,故∠D′E′A=108º.|OA→ |=|AB′→ |=∣B′C′→ |=|C′D′→ |=|D′E′→ |,故 E′与 O重合,O
高三数学教案:平面向量,标签:高三数学教案模板,http://www.kmf8.com

解 证(3)以 A为起点作AB′→ =OB→ ,以 B′为起点作B′C′→ =OC→ ,以C′为起点作C′D′→ =OD→ ,以D′为起点作D′E′→ =OE→ .

∵∠AOB=72º,

∴∠OAB′=108º.

同理∠AB′C′=∠B′C′D′=∠C′D′E′=108º,故∠D′E′A=108º.

|OA→ |=|AB′→ |=∣B′C′→ |=|C′D′→ |=|D′E′→ |,

故 E′与 O重合,OAB′C′D′为正五边形.

OA→ +OB→ +OC→ +OD→ +OE→ =OA→ +AB′→ +B′C′→ +C′D′→ +D′E′→ =0.

正三角形,正方形、正n边形可类似获证.

点评 本题不仅揭示了正多边形的一类共同性质,而且巩固了“以退为进”的数学思想.面对一般的问题,我们经常先考虑其特殊的情况;面对陌生的问题,经常去联想熟悉的模型.注意退是为了进,退到特殊简单情形后,要在求解中悟出一般的规律.如退到正方形情况,发现OA→ +OB→ 与OC→ +OD→ 正好互为相反向量,结论成立.这一方法却不具一般性.

【知能集成】

1. 基础知识:向量加减的代数形式运算与几何形式运算.

2. 基本技能:向量运算中的合二为一与拆一为二.

3. 基本思想:向量表达式运算与几何式运算的相互结合思想,联想熟悉的类似的模型,化归转化思想.

【训练反馈】

1.下列各式正确的是: ( )

A.∣a-b∣≤∣a∣+∣b∣ B. a+b∣>∣a∣+∣b∣

C.∣a+b∣>∣a-b∣ D.∣ a-b∣=∣a∣-∣b∣

2.下面式子中不能化简成AD→ 的是 ( )

A.OC→ -OA→ +C D→ B.PB→ -DA→ -BP→

C.AB→ -DC→ +BC→ D.(AD→ -BM→ )+(BC→ -MC→ )

3.正方形ABCD的边长为1,AB→ =a,BC→ =b,AC→ =c,则a+b+c、a-b+c、-a-b+ c 的摸分别等于 .

4.设a、b 为已知向量,若3x+4y=a,2x-3y=b , 则 x= .

y= .

5. 已知 e1、e2 不共线,AB→ =2e1+ke2,CB→ =e1+3e2,C D→ =2e1-e2,且A、B、D 三点在同一条直线上,求实数k .

6.在正六边形ABCDEF中,O 为中心,若OA→ =a,OE→ =b,用a、b 表示向量OB→ ,OC→ ,OD→ ,结果分别为 ( )

A.-b,-b-a,-a B. b,-a,b-a

C.-b,a,a-b D.-b,-a,a+b

7. 试用向量方法证明:对角线互相平分的四边形是平行四边形.

8.已知P为△ABO 所在平面内的一点,满足OP→ = ,则P在 ( )

A.∠AOB的平分线所在直线上 B. 线段AB的中垂线上

C. AB边所在的直线上 D. AB边的中线上.

9.设O是平面正多边形A1A2A3…A n 的中心,P

为任意点,求证:

PA1→ +PA2→ +PA3→ +…+PAn→ =nPO→ .

10.如图设O为△ABC内一点,PQ∥BC,且PQ→ ∶

BC→ =2∶3, OA→ =a,OB→ =b,OC→ =c,

则 OP→ ,OQ→ .

11.P为△ABC所在平面内一点,PA→ +PB→ +PC→ =0 ,则P为△ABC的 ( )

A.重心 B.垂心 C. 内心 D.外心

12.在四边形ABCD中,E为AD的中点,F为BC的中点.求证:EF→ = (AB→

+DC→ ).

第30课 向量的坐标运算

【考点指津】

1. 理解平面向量的坐标表示法,知道平面向量和一对有序实数一一对应.

2. 掌握平面向量的和、差、实数与向量积的坐标运算,能利用向量的坐标运算解题.

3. 掌握平面向量平行的充要条件的坐标表示,并利用它解决向量平行(共线)的有关问题,弄清向量平行和直线平行的区别.

【知识在线】

1. 若向量a的起点坐标为 (-2,1),终点坐标为(2,-1),则向量a的坐标为

2.若O为坐标原点,向量a=(-3,4),则与a共线的单位向量为

3.已知a=(-1,2),b=(1,-2),则a+b与a-b的坐标分别为 ( )

A.(0,0),(-2,4) B.(0,0),(2,-4)

C.(-2,4),(2,-4) D.(1,-1),(-3,3)

4.若向量a=(x-2,3),与向量b=(1,y+2)相等,则 ( )

A. x=I,y=3, B. x=3,y=1

C. x=1,y=-5 D. x=5,y=-1

5.已知A(0,0),B(3,1),C(4,3),D(1,2),M、N分别为DC、AB的中点.

(1) 求证四边形ABCD为平行四边形;

(2) 试判断AM→ 、CN→ 是否共线?为什么?

【讲练平台】

例1 已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行?

分析 已知a、b的坐标,可求a-3b的坐标,ka+b的坐标也可用含k的表达式表示.运用两向量平行的充要条件x1y2-x2y1=0可求k值.

解 由已知a=(1,2),b=(-3,2), 得

a-3b=(10,-4), ka+b=(k-3,2k+2).

因(ka+b)∥(a-3b),

故10(2k+2)+4(k-3)=0.

得k=- .

点评 坐标形式给出的两个向量,其横坐标之和即为和向量的横坐标;其纵坐标之和即为和向量的纵坐标.实数与向量的积其横、纵坐标分别等于实数与该向量的横、纵坐标的积.

向量的平行用坐标形式表达即为一个方程.

例2 已知向量a=( , ),b=(-1,2),c=(2,-4).求向量d,使2a,-b+ c及4(c-a)与d四个向量适当平移后,能形成一个顺次首尾相接的封闭向量链.

分析 四个向量适当平移后,形成一个顺次首尾相接的封闭向量链,说明这四个向量之和为0.即四个向量的纵横坐标之和均为0.据此列出关于向量d(x,y)的方程组,不难求得x、y.

简解 设向量d的坐标为(x,y),由2a+(-b+ c)+4(c-a)+d=0,

可解得d=(-9,23).

点评 数学语言常有多种表达方式,学会转化与变通是求解的关键.本题以几何特征语言形式出现,最终落足点要变式成方程的语言来求解,这一思想方法在求解向量问题时经常用到.

例3 已知平面上三点P(2,1),Q(3,-1),R(-1,3).若点S与这三点可以为一个平行四边形的四个顶点,求S的坐标.

上一页  [1] [2] [3] [4] [5] [6] [7] [8]  下一页


Tag:高三数学教案高三数学教案模板高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学教案
上一篇:高三数学教案:二次函数梳理复习